2011.7.19

第5回ものづくり支援システムDEXCS研究会

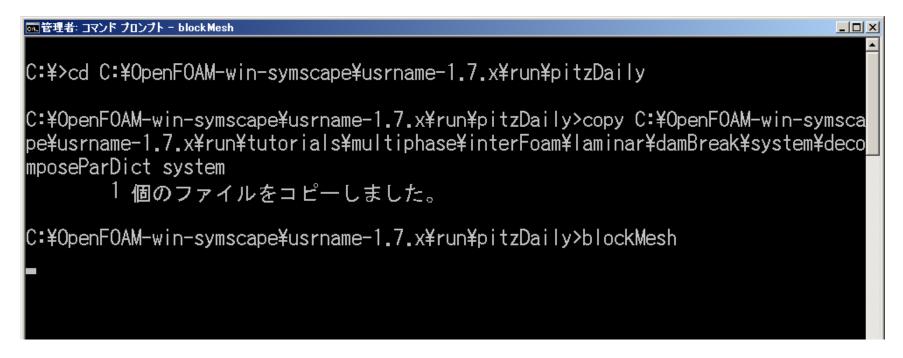
株式会社 計算力学研究センター 金田 誠

OpenFOAM on Windowsとは

• ネイティブWindows上で動くOpenFOAM

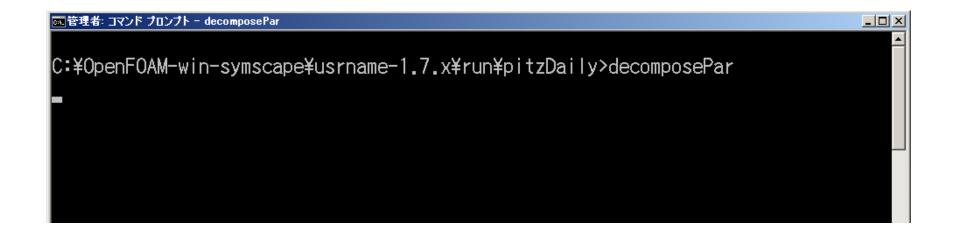
	OpenFOAM Wikiのビルド法	Symscape社のビルド法
開発元	blueCAPE社	Symscape社
バイナリの商品名	blueCFD	OpenFlow
Windows OS	32ビット、64ビット	64ビット
並列計算	MPICH2 (MS-MPIにアレンジ可能)	MS-MPI GPU(CUDA)

・バイナリ(=動くプログラム)は有償ですが、オープンソースです。パッチとビルド方法が公開されています


OpenFOAM Wikiの方法:

http://openfoamwiki.net/index.php/Tip_Cross_Compiling_OpenFOAM_1.7_in_Linux_For_Windows_with_MinGW

Symscape社の方法:


http://www.symscape.com/openfoam-1-7-x-on-windows-64-mpi

①格子生成

- pitzDailyケースのディレクトリに移動
- •領域分割のための設定ファイルを準備
- •blockMeshコマンドを実行して格子生成

②領域分割

- •decomposeParコマンドを実行して、並列計算のために領域分割。
 - ここでは4並列で計算するので、4つの領域に分割。

③ソルバを実行

```
画管理者: コマンドプロンプト - mpiexec -n 4 pisoFoam.exe -parallel

C:¥OpenFOAM-win-symscape¥usrname-1.7.x¥run¥pitzDaily>mpiexec -n 4 pisoFoam.exe -paralle|
```

•MS-MPIを使って、pisoFoamソルバを4並列で実行

④並列計算の結果を統合

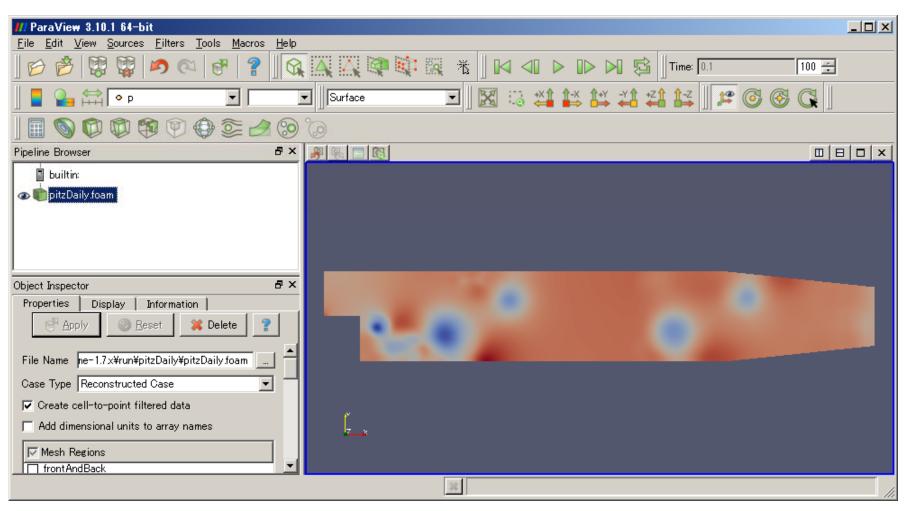
```
画管理者: コマンド プロンプト - reconstructPar

C:¥OpenFOAM-win-symscape¥usrname-1.7.x¥run¥pitzDaily>reconstructPar

■
```

•reconstructParコマンドを実行して、並列計算用に 分解されたフィールドとメッシュを統合。

⑤可視化(1)


```
C:¥OpenFOAM-win-symscape¥usrname-1.7.x¥run¥pitzDaily>echo.>pitzDaily.foam

C:¥OpenFOAM-win-symscape¥usrname-1.7.x¥run¥pitzDaily>start paraview.exe --data="pitzDaily.foam"

C:¥OpenFOAM-win-symscape¥usrname-1.7.x¥run¥pitzDaily>
```

- •「pitzDaily.foam」という名前の空のファイルを作成
- ParaViewでこのファイルを開くと、計算結果が可視化 される。

⑥可視化(2)

OpenFOAMのプラットフォームによる制限事項

	Linux実機	VMware Player	OpenFOAM on Windows
最大CPUコア数	MPIの上限	4	MPIの上限
GPU計算	0	×(?)	0
OpenFOAMの バージョン	最新バージョンが 使える	最新バージョンが 使える	OpenFOAM Wiki: 1.7.0 Symscape社: 1.7.x
foamスクリプト (bashスクリプト)	0	0	コマンドプロンプトで× MSYSでO(?)
pyFoam	0	0	×

※ MSYSとは

Windows上で動作するUnixコマンド。 Cygwinと似ているが、クロスコンパイルされた今回の OpenFOAM on Windowsは、Cygwinでは動かない。

•実施ケース: incompressible/pisoFoam/les/pitzDaily 非圧縮、非定常、LESのpitzDailyチュートリアル

計算ステップ数	100
領域分割の方法	scotch
Solver	p : PCG(CPU)、PCGgpu(GPU) p以外: PBiCG(CPU)、PBiCGgpu(GPU)
Preconditioner	diagonal

- ・GPU計算で使えるsolverとpreconditionerの種類には制限があり、CPU計算でもGPUと同じものを使用した。CPU計算では他のsolverとpreconditionerも使えるので、CPU計算に関してはチューニングの余地がある。
- ・GPU計算では、①pの計算のみGPUを使用、②p以外の計算もGPUを使用、の2パターンを試したところ、②p以外もGPUを使用した方が若干速度が速かったため、②で統一した。

全結果(全て64ビット)

単位:秒

	1×1 12,000セル	5 × 5 30万セル	10 × 10 120万セル	20× 20 480万セル
(1) Linux	32.6	1782	7285	34720
(2) Linux 4並列	10.2	571	3335	13483
(3) Linux 1GPU	93.5	383	1187	4783
(4) Linux 1GPU 単精度	98.8	290	726	2838
(5) Windows(Sym)	24.7	1815	9287	37832
(6) Windows(Sym) 4並列	8.3	612	3890	16072
(7) Windows(Sym) 1GPU	142.7	692	1693	5194
(8) Windows(Wiki)	38.2	2256	9629	38640
(9) Windows(Wiki) 4並列	13.5	776	4195	16171

- •「5 × 5」は、格子セル数をx方向に5倍、y方向に5倍したことを表す。
- ・Windows(Sym)は、Symscape社の方法でビルドしたOpenFOAM on Windows
- ・Windows(Wiki)は、OpenFOAM Wikiの方法でビルドしたOpenFOAM on Windows
- •MPIは、LinuxはOpenMPIで、WindowsはMS-MPI。

(1) Linux版とWindows版の比較

単位:秒

	1 × 1 12,000セル	5 × 5 30万セル	10 × 10 120万セル	20×20 480万セル
(1) Linux		1782	7285	34720
(2) Linux 4並列		571	3335	13483
(3) Linux 1GPU		383	1187	4783
(5) Windows(Sym)		1815	9287	37832
(6) Windows(Sym) 4並列		612	3890	16072
(7) Windows(Sym) 1GPU		692	1693	5194

・体感的にはWindows版は非常に遅く感じるが...? 起動には時間がかかるが、計算が始まってしまえばそれほどでもない。

対話的に何度もコマンドを起動する場合は、起動の遅さが気になる。

(2) 逐次計算と並列計算の比較

単位:秒

	1×1 12,000セル	5 × 5 30万セル	10 × 10 120万セル	20× 20 480万セル
(1) Linux	32.6	1782	7285	34720
(2) Linux 4並列	10.2	571	3335	13483
(3) Linux 1GPU	93.5	383	1187	4783
(5) Windows(Sym)	24.7	1815	9287	37832
(6) Windows(Sym) 4並列	8.3	612	3890	16072
(7) Windows(Sym) 1GPU	142.7	692	1693	5194

•逐次計算と4並列の比較 : (1)と(2)、(5)と(6) だいたい4並列の数字になっている

•4並列と1GPUの比較 : (2)と(3)、(6)と(7)

格子セル数が増えると、4並列より1GPUが速くなった

(3) Simscape社とOpenFOAM Wikiの比較 単位: 秒

	1×1 12,000セル	5 × 5 30万セル	10 × 10 120万セル	20×20 480万セル
(5) Windows(Sym)		1815	9287	37832
(6) Windows(Sym) 4並列		612	3890	16072
(8) Windows(Wiki)		2256	9629	38640
(9) Windows(Wiki) 4並列		776	4195	16171

・逐次処理の比較 : (5)と(8)

•4並列の比較 : (6)と(9)

いずれもSymscapeが若干速いが、480万セルの格子ではあまり差がない。

(参考) GPUの倍精度と単精度の比較

単位:秒

	1×1 12,000セル	5 × 5 30万セル	10 × 10 120万セル	20×20 480万セル
(3) Linux 1GPU		383	1187	4783
(4) Linux 1GPU 単精度		290	726	2838

[・]単精度の方が速いが、単精度にすると収束が悪くなったり、計算が発散しやすくなる。

OpenFOAM on Windowsの構築技術 ビルドとは(1)

・コンパイルとは

ソースコード(人間が作成したプログラム)をオブジェクトコード(コンピュータが理解できる形式)に変換

・ライブラリとは

頻繁に使うオブジェクトコードを、再利用できる形にまとめた もの

	静的ライブラリ	動的ライブラリ
Linux	lib*.a	lib*.so
Windows	*.lib	*.dll

OpenFOAM on Windowsの構築技術 ビルドとは(2)

- リンクとは必要なオブジェクトコードとライブラリを連結して、実行可能 ファイルを生成
- ビルドとは コンパイルからリンクまで一連の作業をすべて行う
- ▪makeとは ビルドを行うためのツール

Autoconf

GNUが配布しているソフトウェアパッケージを、ソースコードから インストールするときの流れ:

- % ./configure
- % make
- % sudo make install
- ① configureスクリプトを実行して、環境に適応したMakefileを 生成
- ② 生成されたMakefileを使ってmakeを実行し、ビルドする
- ③ ビルド結果をインストール先にコピー

OpenFOAM on Windowsの構築技術 クロスコンパイル

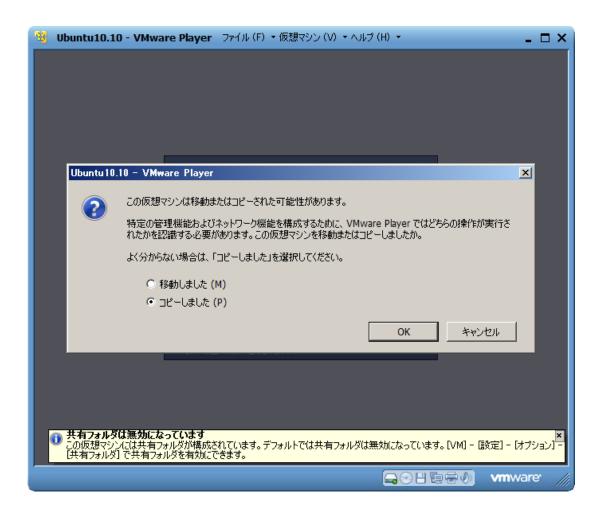
- クロスコンパイルとは コンパイラが動作している以外のプラットフォーム向けに実 行可能ファイルを生成すること
- ▶OpenFOAM on Windowsでは、Linux環境でWindows用の実行可能ファイルを生成する。

	32ビット	64ビット
MinGW クロスコンパイラ	mingw32 mingw-w32	mingw-w64
mingw-w64 クロスコンパイラ	i686-w64-mingw32	x86_64-w64-mingw32

- OpenFOAM on Windowsのバイナリは商品化されているため、 配布いたしません。あしからずご了承ください。 ご利用になりたい方は、ソースからビルドされるようお願いい たします。
- ■「オープンCAE初心者勉強会の夏の合宿2011」(8/27~28)に ご参加される方は、OpenFOAM on Windowsのビルドをご体 験いただけます。作業は VMWare Player上で行います。
- すぐにビルドなさりたい方のために、DVDをご用意します(希望 される方のみ)。

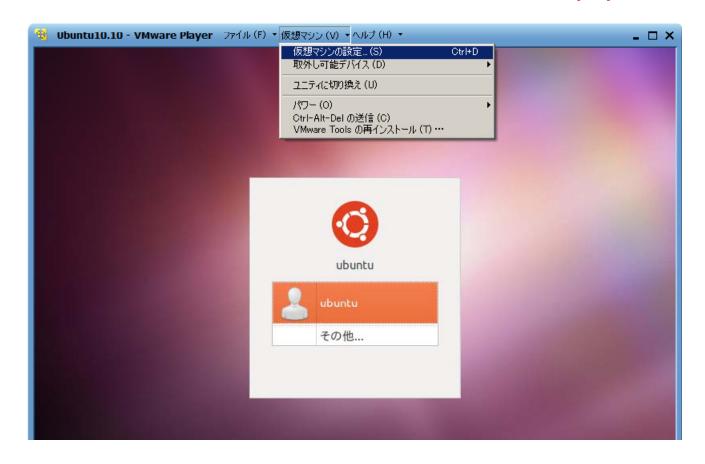
OpenFOAM on Windowsの構築技術 DVDの使用法(1)

- •Symscape社の方法(64ビット)と、OpenFOAM Wlki の方法(32 ビット)をご用意しました。
- 全体のビルド作業を、7つのステップに分割しました。
 作業手順は、step*.txtに書かれています。
 step*.txtのエンコードの種類はUTF-8で、仮想マシンのホームディレクトリにも入れてあります。


OpenFOAM on Windowsの構築技術 DVDの使用法(2)

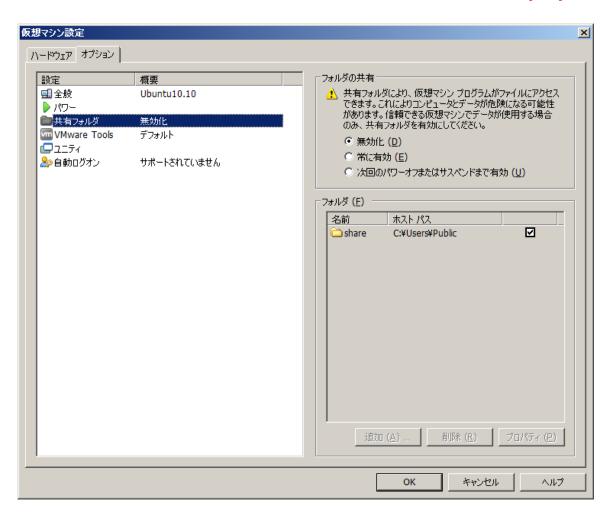
- *step*.txtの作業が終了した時点で、VMWare Playerの仮想ディスクをstep*.rarにRAR形式で圧縮しました。 今回のDVDではstep2.rar(step2まで終わっています)を配布しますので、step3以降をすぐにお試しいただけます。
- •RAR形式のファイルは、WinRAR等のアーカイバを使って解凍できます。

http://www.diana.dti.ne.jp/~winrar/


RARファイルの中に4Gバイト超のファイルが含まれていますので、解凍するときはNTFSファイルシステムのドライブをご使用ください。

DVDの使用法(3)

仮想マシンを立ち上 げて左のように表示 されたら、「コピーし ました」を選択すれ ば OKです。

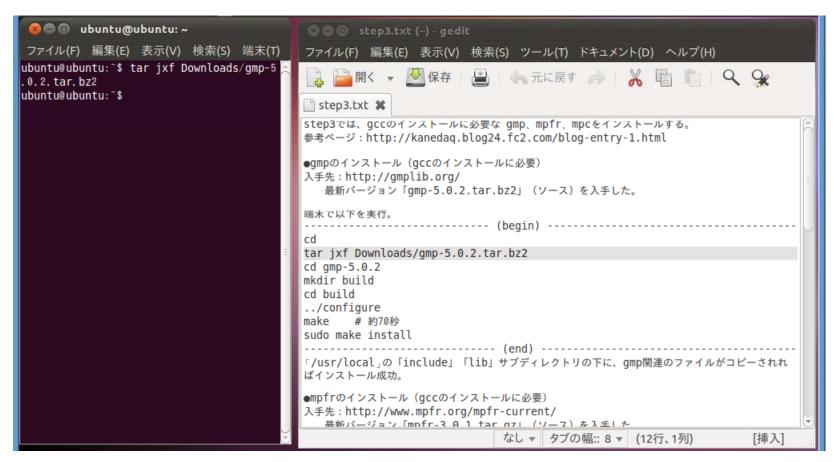

DVDの使用法(4)

ホストマシンとゲ ストマシン間の共 有フォルダを有効 にするには、「仮 想マシンの設定」 を立ち上げます。

パスワードは「ubuntu」です。

DVDの使用法(5)

オプションタブ→共 有フォルダを選択し、 フォルダの共有で 「常に有効」を選択 すれば、共有フォル ダを有効にできます。


ホストパス等も自分 好みに変更できます。

DVDの使用法(6)

Linux上で、gedit等で\$HOME/step*.txtを開き、実行したい処理を選択して...(続く)

DVDの使用法(7)

端末でマウスの中ボタンをクリックして貼り付けます。エラーメッセージが出ないかご確認ください。