DE開発 藤井 11/07/08 荷重拘束、弱いバネ追加 11/10/16

SalomeMecaの使いかた -- 6.0 接触 - 基本 (2) (SalomeMeca 2010.2)

目次

- 1. はじめに
- 2. 変位拘束した時の接触解析
- 2-1. モデルの読み込み
- 2-3. Entityの作成
- 2-4. メッシュの作成
- 2-5. 解析コードの作成
- 2-6. 解析コードの編集
- 2-6-1. 境界条件の編集
- 2-6-1-1. 通常の境界条件
- 2-6-1-2. 少しづつ負荷させる境界条件作成
- 2-6-2. 接触の定義
- 2-6-3. 接触の為のコード追加
- 2-6-4. 非線形解析方法の設定
- 2-6-5. Post 処理の修正
- 2-7. 解析の開始
- 2-8. 計算結果の確認
- 3. 荷重拘束した時の接触解析
- 3-1. モデル、メッシュ、解析コードの作成
- 3-2. 解析コードの編集
- 3-3. 実行、結果の確認
- 4. 荷重拘束した時の接触解析 (弱いバネを追加)
- 4-1. 弱いバネについて
- 4-2. モデルの作成
- 4-3. 解析コードの編集
- 4-4. 実行、結果の確認
- 5. まとめ
- 6. ソースコード

1. はじめに

接触解析において、SalomeMeca2010.1以降から Code_Aster のコマンド体系が変更され、従来の解析コード そのままでは、エラーが発生し、接触解析の計算ができなくなっている。この為、新しいコマンド体系で接 触解析してみる。

また、従来は変位拘束のみの解析だったが、これに加えて、今回、荷重拘束で接触解析を行なう方法を追記 した。荷重拘束で接触問題を解く場合は、変位が拘束されていないので、剛体移動(rigid movement)が起 こり易く、通常通りに解析するとエラーが発生する事がある。この剛体移動を防ぐ方法として、変位拘束さ れていない部品に対し、弱いバネを追加して変位拘束する方法があるので、これを追記している。

尚、ここで取り上げる接触解析は、「摩擦なし」の場合を考えている。摩擦を考える場合は、「6.1 接触 (摩擦あり)」を参照。

2. 変位拘束した時の接触解析

ここで2部品同士を変位拘束(1部品を固定、1部品を変位させる)した時の接触解析を行なってみる。 この場合は、2部品とも変位拘束されているので、剛体移動は発生せず、普通に解ける。

2-2. モデルの読み込み

モデルは、連結問題で使用したモデルをそのまま使う。「multi-bar-1.stp」を読み込む。 解析は、Barの上面(press面)を-0.2mm Z方向に変位させる接触問題として解析してみる。 モデルを読み込んだ後は、モデルサイズを「Measures」>「dimensions」>「boundingBox」で確認してお く。

2-3. Entityの作成

連結問題と同様に解析で使用する Volume や Face をグループ化しておく。 press Bar ツリーの構造は下記。 また、前項でモデルサイズを確認しており、モデルはメートル単位で作成 されているので、変位の境界条件は、メートル単位で入力することになる。 Geometry multi-bar-1-R.stp 1 Base Solid1 (Base) Base *multi-bar-1-R.stp_1 固定面 fix fix (裏面) contBase Base の接触面 Bar Solid2 (Bar) *multi-bar-1-R.stp 1 Bar の接触面 contBar press 荷重を付加する面

2-4. メッシュの作成

通常通りメッシュを切る。以下のメッシュを切った。

2-5. 解析コードの作成

画面を Aster モジュールに変えて、ウィザードを使い、通常通り Code_Aster の解析コードを作成する。この時、固定面は fix 面、荷重面は press 面で 0.1 MPa (1e5 Pa) としておく。 材料定数は、ベリ銅の値をそのまま使用。

ヤング率: 1.303e11 Pa

ポアソン比: 0.343

作成した Code_Aster のファイル名は「test.comm」として保存しておく。

2-6. 解析コードの編集

EFICASを使って、作成された解析コードを接触問題が解けるように編集する。 従来までのCode_Asterは、接触のコマンドが境界条件を設定するコマンド「AFFE_CHAR_MECA」コマンドの 下に「contact」コマンドがあったが、SalomeMeca2010からは、最上位に「DEFI_CONTACT」コマンドが準備 される様になった。従って、従来に対して違うところは「2-6-2、2-6-4」になる。

2-6-1. 境界条件の編集

境界条件は、

1. 通常の境界条件

2. 負荷を少しづつ変化させる条件

の2種類の条件に分けて設定する。以下に各々の境界条件設定法方について示す。

MODF

2-6-1-1. 通常の境界条件

MODEL F

ここは、通常通り以下で作成する。 AFFE_CHAR_MECA CHAR

ウイザードで作成された境界条件

DDL_IMPO		
GROUP_MA	fix	固定する面(fix)を固定
DX	0	
DY	0	
DZ	0	
DDL_IMPO_2		
GROUP_MA	press	負荷を掛ける面 (press)の XY 方向を固定
DX	0	
DY	0	

2-6-1-2. 少しづつ負荷させる境界条件作成

ここも従来と同じ内容。

press 面を Z 方向に-0.2mm 変位させるが、この変位が接触面に直接影響を与えるので、この変位を少しづつ 変化させていくようにする必要がある。この為、この境界条件を独立させて定義する。

現在設定されている AFFE_CHAR_MECA の後に、以下を追加する。

DZ は、モデルの大きさに合わせて、設定する。今回のモデルは、メートルで作成されていたので、変位 DZ は、-0.0002 に設定している。

AFFE_CHAR_MECA	loadP	名称は任意で可。この名前を後で使用する。
MODELE	MODE	
DDL_IMPO		
GROUP_MA	press	press 面を
DZ	-0.0002	Z 方向に-0.2mm 変位させる

2-6-2. 接触の定義

ここは、SalomeMeca2010で新しく設定されたコマンドになる。従来は、境界条件(AFFE_CHRA_MECA)内で 設定していた。この接触の定義を「AFFE_CHAR_MECA」の次に「DEFI_CONTACT」を追加する。この内容を以下 で作成した。(ほとんどデフォルトのまま)

DEFI_CONTACT	contact	
MODELE	MODE	
FORMULATION	DISCRETE	
<pre>b_contact</pre>		
<pre>b_bouc_geom_disc</pre>		
<pre>b_automatique</pre>		
<pre>b_bouc_cont_disc</pre>		
<pre>b_para_discret</pre>		
<pre>b_affe_discret</pre>		
ZONE		
GROUP_MA_MAIT	contBase	接触面を定義
GROUP_MA_ESCL	contBar	接触面を定義
ALGO_CONT	CONTRAINTE	
<pre>b_active</pre>		

2-6-3. 接触の為のコード追加

引き続き、次の行に、接触問題を解くためのファンクションを追加する。ここは、前と同じ。 press 面の変位を 0 から 0.2mm まで徐々に変位させていく方法を取る為、0~0.2mm までの中間の値をどのよ うに設定するか (線形 or 非線形で回帰)を設定する。普通に線形で回帰させる (ramp 制御) 方法とする。 この為のファンクションを下記の様に定義する。 値は、倍率を表しており、「1」は、-0.2mm を示している。

座標の入力は、X,Yの形式でXYのペアで入力する。

DEFI_FONCTION	ramp	名称は任意で可。この名前を後で使用する。
NOM_PARA	INST	変数は、VALEで入力
VALE	(0, 0, 1, 1)	原点 (0,0) から (1,1) までを線形で回帰する

次に1.0(1.0倍)までを何分割して解析するのかを定義する。下記参照。

DEFI_LIST_REEL DEBUT	inst 0.0	名称は任意で可。この名前を後で使用する。 初期値を設定
INTERVALLE		
JUSQU_A	1.0	0~1までを
PAS	0.2	0.2毎に5分割する。

2-6-4. 非線形解析方法の設定

SalomeMeca2010 では、solver (STAT_NON_LINE) 内に contact コマンドが追加されているので、以下の様に 追記した。 (必要最小限の変更にした。)

ウィザードで設定した MECA_STATIQUE (線形解析方法)の後に、非線形の解析方法 (STAT_NON_LINE)を追加し、MECA_STATIQUE は削除する。以下のコードが STAT_NON_LINE の内容。

STAT_NON_LINE	RESU	MECA_STATIQUE と同じ名前(MECAS_STATIQUE を削除後設定)
MODELE	MODE	モデルを指定
CHAM_MATER	MATE	材料を指定
EXCIT		
EXCIT_1		
CHARGE	CHAR	通常の境界条件(fix面の固定)
EXCIT_2		
CHARGE	loadP	少しづつ負荷させる条件(press 面の変位)
FONC_MULT	ramp	中間の変位を線形で求める
CONTACT	contact	接触を読み込む
COMP_ELAS		
RELATION	ELAS	
<pre>b_not_resue</pre>		
INCREMENT		
LIST_INST	inst	0.2づつ増える
b meth newton		

上記コードを追加した後、MECA_STATIQUEを削除する。

最初の STAT_NON_LINE の名前「RESU」は、元々設定してあった MECA_STATIQUE と同じ名前に設定する。名前の設定は、先に MECA_STATIQUE を削除した後、STAT_NON_LINE の名前を設定する。削除する前は、同じ名前になるので設定できないので注意。

別の名前でも構わないが、MECA_STATIQUE を削除した時、これにリンクされている Post 処理側(CALC_ELEM など)がエラーになるので、この再設定が必要。再設定時に名前を同じにしておくと、設定結果も同じにな

るので、誤解が少なくなる。

2-6-5. Post 処理の修正

Post 処理側がエラーになっているので、修正する。(ここは、従来のまま) CALC_ELEM (要素解)は、コマンド名と OPTION がエラーになっているので、これを修正。 CALC_ELEM RESU 元の名前と同じRESUに設定 MODELE MODE CHAM MATER MATE RESULTAT RESU b noil b_toutes OPTION EQUI ELNO SIGM 相当応力の要素解を設定 次のCALC_NO(節点解)は、エラーになっている箇所(CALC_NO、RESULTAT)に「RESU」を入力する。 CALC_NO RESU RESULTAT RESU OPTION EQUI_NOEU_DEPL,EQUI_NOEU_SIGM 節点解の相当歪、相当応力を指定 また、次の IMPR_RESU も上記の CALC_NO と同じくエラーになっている箇所に「RESU」と入力する。 IMPR RESU FORMAT MFD b_format_med UNITE 80 RESU MAIL MAILLAGE RESULTAT RESU b_info_med b_sensibilite b partie b extrac NOM_CHAM (EQUI_NOEU_SIGM,DEPL) 相当応力、変位を出力 c_cmp

- b_topologie
- 2-7. 解析の開始

通常通り、解析をスタートさせる。警告はでるが、エラーなく終了。

2-8. 計算結果の確認

計算が終了したので、結果を確認する。以下が確認した結果になる。うまく計算できている。

3. 荷重拘束した時の接触解析

2項で、変位拘束した時の接触解析を行なったが、ここでは、1部品を固定し他の1部品を荷重拘束(荷重 で押し付ける)した時の接触解析を行なってみる。荷重拘束した時は、剛体移動が起こり易いので、計算が 収束し難くなってくる。剛体移動が発生する場合は、4項の方法で解析する。

3-1. モデル、メッシュ、解析コードの作成

モデルやメッシュは、2項の変位拘束した時のモデルをそのまま使って解析してみる。 また、Code_Aster も2項で作成した解析コードを編集し直せば済むので、2項で作成した解析コード「tes t.comm」をコピーして「test-F.comm」を作成しておく。編集は、test-F.commを編集して、荷重拘束の解 析コードを作成する事にする。

3-2. 解析コードの編集

salome を Aster モジュールに設定し、変位拘束で作成した study Case「linear-static」を選択した上で、 「Aster」>「Current study case」>「Edit」で以下の様に study case を編集する。ここで解析コードを 「test-F.comm」に設定する。〇内を修正する。

Study case defi	nition	
Name	linear-static	
Command file	from disk	t/test-F.comm
Mesh	from object browser	Mesh_1
ASTK services	>	
Server	localhost 🕹 Aster version STA10.2 🕹	Refresh sen
	e interactif 🔸 Interactive follow up 🗹	
Execution mod		
Execution mod Solver pramete	rs	

解析コードを「test-F.comm」に変更後、解析コードを編集する。

編集する箇所は、

境界条件: press 面に 100Pa の圧力を掛ける

接触: 荷重拘束で計算できるように変更

を編集する。

尚、圧力は 100Pa で小さい値にしている。理由は、大きな荷重では、剛体移動が発生し、エラーになってしまうため。剛体移動を防ぐ方法は、4 項参照。

解析コード中で該当する以下の箇所を変更する。

<press面に圧力を印加>

fix 面の固定と press 面の XY 方向の拘束。この部分は、変更せずそのまま。

AFFE_CHAR_MECA	CHAR
MODELE	MODE
DDL_IMPO	
DDL_IMPO_1	
GROUP_MA	fix
DX	0.0
DY	0.0
DZ	0.0
DDL_IMPO_2	
GROUP_MA	press
DX	0.0
DY	0.0

press 面に 100 Pa を印加する様に変更する。

荷重は小さい値に設定した。荷重を大きくすると剛体移動が発生し、解析できなかった為。剛体移動を防ぐ 方法は、4項参照。

AFFE_CHAR_MECA	loadP	
MODELE	MODE	
PRES_REP		
GROUP_MA	press	press 面に

PRES 100 100Paを印加

<接触の条件変更>

変位拘束の場合は、お互いの接触面を定義するだけで良かったが、荷重拘束の場合は、接触面の他に、FORM ULATIONを「CONTINUE」にセットし、CONTACT_INITを追加する。

DEFI_CONTACT		
MUDELE	MODE	
FORMULATION	CONTINUE	<continue td="" を選択する<=""></continue>
b_contact		
<pre>b_affe_continue</pre>		
ZONE		
GROUP_MA_MAIT	contBase	base 側の接触面
GROUP_MA_ESCL	contBar	bar 側の接触面
CONTACT_INIT	OUI	<この行を追加
b_cont_std		
—		

< solver の修正>

ここは、そのままでも一応計算してくれるが、警告が発生するので一ヶ所修正する。

STAT_NON_LINE	RESU	
MODELE	MODE	
CHAM_MATER	MATE	
EXCIT		
CONTACT	contact	
COMP_ELAS		
<pre>b_not_reuse</pre>		
INCREMENT		
<pre>b_meth_newton</pre>		
NEWTON		追加
REAC_ITER	1	デフォルトでは「0」になっているが「1」に変更

3-3. 実行、結果の確認

以上で修正が全て終了したので、実行する。 以下が実行した結果になる。bar 上面の press 面に荷重を掛けているので、press 面が平面でなく曲面に なっている。

4. 荷重拘束した時の接触解析 (弱いバネを追加)

荷重拘束した場合の接触解析は、3項で示したが、荷重を大きくするとbarの剛体移動が発生してしまい、 エラーが発生する。この場合、剛体移動が発生する部位に弱いスプリングを追加して、剛体移動を防ぐ方法 がある。ここでは、この方法を使って、解析する。

4-1. 弱いバネについて

剛体移動が発生しない様に、変位拘束されていないメッシュモデルに直接、弱いバネを追加する。このバネ を追加する為には、以下の方法に従って、追加する。詳細は、「U4.42.01 AFFE_CARA_ELEM」を参照。

- 弱いバネを追加したい場所(点)の定義 変位拘束していない solid モデル(今回の場合 bar)の点をグループ化し、定義する。
 <例>
 bar の press 面の 4 角(弱いバネを追加したい場所)を addSP でグループ化実施
- 2) 定義した点に要素1ヶを追加

CREA_MAILLAGE コマンドで、定義した各節点に CREA_POI1の要素を1ヶ追加する。 <例>

CREA_MAILLAGE	newMesh	追加
MAILLAGE	MAIL	
CREA_POI1		POI1 (nodal discrete element) の要素を
NOM_GROUP_MA	spElmt	要素名「spElmt」に設定して
GROUP_NO	addSP	addSPに作成する

 3) 要素を追加したメッシュを適用 新しく作成したメッシュ(要素を追加したメッシュ)を AFFE_MODELE コマンドで適用する。
 <例>

AFFE MODELE MODE MAILLAGE 2) 項で作成した newMesh を適用する。 newMesh AFFE AFFE_1 : AFFE 2 追加 GROUP MA spElmt PHENOMENE MECANIQUE b mecanique MODELISATION DIS T

4) 追加した要素にバネ定数を定義

剛性 matrix

追加した POI1 要素に剛性で 値を設定する。1ヶの要素 バネ定数を設定。 この剛性マトリックスは、 下げられている状態になる	マトリックス(K_T_D_N) に右記の剛性マトリック 変位「0」に対して働く 5。(変位拘束された状態	・を定義し、剛性(バネ定数)の っスが定義されるので、各方向の ので、節点が、弱いバネで吊り 態)	Ux Uy Uz $k_x 0 0$ $0 k_y 0$ 0 0 k
<例>			
AFFE_CARA_ELEM	softSp	追加	
MODELE	MODE		
DISCRET			
<pre>b_SYME_OUI</pre>			
CARA	K_T_D_N	剛性マトリックスを定義	
b_AK_T_D_N			
GROUP_MA	spElmt	要素名「spElmt」に	
VALE	1e5, 1e5, 1e5	剛性(Kx,Ky,Kz)を定義	

5) solver に追加した要素の定数を読み込ませる solver に「CARA_ELEM」コマンドを追加して、追加した要素を読み込んで計算させる。 <例> STAT_NON_LINE RESU

MODELE	MODE	
CHAM_MATER	MATE	
CARA_ELEM	softSp	追加
:		

以上の操作で節点に弱いバネを追加する事ができる。

参考までに、「bar」のみのモデルを作り、「bar」の press 面の 4 角を弱いバネで固定し、press 面に荷重 (100Pa)を掛けて計算してみる。変位の拘束は、行なっておらず、弱いバネを追加しただけで、solver は、 「MECA_STATIQUE」を使用して計算した。通常であれば、変位拘束していないので、剛体移動が起こり、エ ラーが発生する。

以下が計算結果になる。変位は、press 面の4角で吊り下げている状態なので、bar の中央部の変位が大き く、応力は、吊り下げている位置(press 面の4角)とbar 中央部の応力が大きくなっている。

以上の様に、弱いバネを追加するだけで、変位の拘束ができている状態になる。

変位の計算結果

応力の計算結果

4-2. モデルの作成

弱いバネを追加して全ての部品を変位拘束してしまえば、2項と同じ解析 になる為、2項の解析コードを編集して弱いバネを追加しても構わないが、 今回は、3項の解析コードを編集して弱いバネを追加する事にする。 この為、3項で解析したモデルやメッシュがそのまま使える様に、caseを コピーして新たなフォルダを作成しておく。 解析は、press 面に「1.0e5 Pa」を掛けた解析を行なってみる。 このモデルでは、bese を固定し、bar 上面の「press」面に荷重を掛けるの で、bar は変位拘束されていない。この為、bar はこのまま解析すると、剛体移動が発生する。 この為、press 面の4角に弱いバネを追加して、剛体移動を防ぐ。 弱いバネを追加したい場所 (press 面の4角)をグループ化しておく。この為、geometry のグループ化は、 以下になる。

addSP

Base	volume	Solid1 (Base)
fix	face	固定面
contBase	face	Baseの接触面
Bar	volume	Solid2 (Bar)
contBar	face	Barの接触面
press	face	荷重を付加する面
addSP	point	弱いバネを追加する場所(press 面の 4 角)

geometry モジュールで addSP を追加した後、mesh モジュールに移動し、メッシュに addSP が追加されていることを確認する。

4-3. 解析コードの編集

モデルが作成できたので、解析コード編集する。そのままでは、編集できないので、3-2項の方法で、comm ファイルが読める状態にしておく。

<弱いバネを追加する場所(addSP)に要素1ヶ追加> モデルを読み込んだ後(MODI_MAILLAGEの後)、に CREA_MAILLAGE コマンドを追加する。 CREA MAILLAGE newMesh MAILLAGE MAIL POI1の要素を CREA POI1 NOM GROUP MA spElmt 要素名「spElmt」に設定して GROUP_NO addSP addSP に追加する <newMeshをモデルに適用> 次のコマンドを修正する。 AFFE_MODELE MODF MAILLAGE newMesh newMeshに変更 AFFE AFF 1 TOUT OUI PHENOMENE MECANIQUE b_mecanique MODELISATION 3D AFFE 2 これ以下を追加する。

AFFE_2 これ以下を追加す GROUP_MA spElmt PHENOMENE MECANIQUE b_mecanique MODELISATION DIS T

<追加した要素にバネ定数を設定>

バネ定数の値は、解析するモデルのヤング率が 1e11 Pa のオーダなので、弱いバネとしは、大雑把に見積 もって 1e5 N/m の値に設定した。尚、このバネ定数は、モデルの変形量によって変わってくる。余りにも 差がありすぎると、剛体移動とみなされ、エラーが発生するので、結果を見ながら設定することになる。 今回は、1e5 とした。

AFFE_CARA_ELEM softSp MODELE MODE DISCRET b_SYME_OUI 13/21

CARA	K_T_D_N	
b_AK_T_D_N		
GROUP_MA	spElmt	弱いバネの要素名「spElmt」に
VALE	1e5,1e5,1e5	バネ定数を設定。

<材料を適用するメッシュを変更>

弱いバネを追加したメッシュを「newMesh」に設定したので、ここも、「MAIL」 → 「newMesh」に変更しておく。

AFFE_MAIERIAU	MAIE	
MAILLAGE	newMesh	ここを修正
AFFE		
TOUT	OUI	
MATER	MA	

< solver の修正>

弱いバネを設定したメッシュで計算させる為に「CARA_ELEM」コマンドを追加する。

ここまでで、弱いバネに関する設定は終わる。

STAT_NON_LINE	RESU	
MODELE	MODE	
CHAM_MATER	MATE	
CARA_ELEM	softSp	追加
EXCIT		
CONTACT	contact	
COMP_ELAS		
<pre>b_not_reuse</pre>		
INCREMENT		
<pre>b_mesh_newton</pre>		
CONVERGENCE		

<境界条件修正>

press 面に掛ける荷重を 1e5	Paに設定する。	
AFFE_CHAR_MECA	loadP	
MODELE	MODE	
PRES_REP		
GROUP_MA	press	
PRES	1e5	1e5 Paに設定

<荷重の分割数を再設定>

3 項の解析では、荷重を 5 分割していたが、10 分割に変更する。理由は、5 分割では、収束しなかった為。 DEFI_LIST_REEL inst DEBUT 0.0 INTERVALLE JUSQU_A 1.0 PAS 0.1 10 分割に設定

以上で解析コードの編集は終了。

4-4. 実行、結果の確認

計算開始させる。計算は、警告がでるもののエラーは無く、うまく進む。 以下が解析結果になる。1e5 Paの圧力を press 面に掛けても、剛体移動が発生せず、うまく計算ができてい る。

5. まとめ

SalomeMeca2010を使って、変位拘束、荷重拘束した場合の接触解析を行ってみた。 SalomeMeca2010の場合、感触としては、ほとんどがデフォルトの設定でうまく計算でき、従来よりも簡単 にコードが作成できる。

また、境界条件として変位や荷重を設定する事もできる。ただし、荷重を境界条件として設定する場合は、 位置を完全に拘束していない為、剛体移動(rigid movement)が発生して、エラーになり易い。この場合は、 弱いバネを追加すれば、剛体移動を防ぐことができる。

また、剛体移動を防ぐ方法として、モデルを工夫して剛体移動を防ぐこともできる。具体的には、移動する 部品に相対的にヤング率の低い部品を接着し、この部品の片方を固定すれば、変位拘束できるので、この方 法でも剛体移動を防ぐことができる。

6. ソースコード

------ 変位拘束の場合 ------DEBUT(); MA=DEFI_MATERIAU(ELAS=_F(E=1.303e11,

NU=0.343,),);

MAIL=LIRE_MAILLAGE(FORMAT='MED',);

MAIL=MODI_MAILLAGE(reuse =MAIL, MAILLAGE=MAIL, ORIE_PEAU_3D=_F(GROUP_MA='press',),);

MODE=AFFE_MODELE(MAILLAGE=MAIL, AFFE=_F(TOUT='OUI', PHENOMENE='MECANIQUE', MODELISATION='3D',),);

MATE=AFFE_MATERIAU(MAILLAGE=MAIL, AFFE=_F(TOUT='OUI', MATER=MA,),);

CHAR=AFFE_CHAR_MECA(MODELE=MODE, DDL_IMPO=(_F(GROUP_MA='fix', DX=0.0, DY=0.0, DZ=0.0,), _F(GROUP_MA='press', DX=0.0, DY=0.0,),),);

ramp=DEFI_FONCTION(NOM_PARA='INST',VALE=(0,0,

SalomeMecaの使いかた -- 6.0 接触 - 基本(2) 1,1,),); inst=DEFI_LIST_REEL(DEBUT=0.0, INTERVALLE= F(JUSQU A=1.0, PAS=0.2,),); RESU=STAT_NON_LINE(MODELE=MODE, CHAM MATER=MATE, EXCIT=(_F(CHARGE=CHAR,), _F(CHARGE=loadP, FONC_MULT=ramp,),), CONTACT=contact, COMP_ELAS=_F(RELATION='ELAS',), INCREMENT=_F(LIST_INST=inst,),); RESU=CALC_ELEM(reuse =RESU, MODELE=MODE, CHAM_MATER=MATE, RESULTAT=RESU, OPTION='EQUI_ELNO_SIGM',); RESU=CALC_NO(reuse =RESU, RESULTAT=RESU, OPTION=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM',),); IMPR RESU(FORMAT='MED', UNITE=80, RESU=_F(MAILLAGE=MAIL, RESULTAT=RESU, NOM_CHAM=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM','DEPL',),); FIN(); DEBUT(); MA=DEFI_MATERIAU(ELAS=_F(E=1.303e11, NU=0.343,),); MAIL=LIRE_MAILLAGE(FORMAT='MED',); MAIL=MODI_MAILLAGE(reuse =MAIL, MAILLAGE=MAIL, ORIE_PEAU_3D=_F(GROUP_MA='press',),); MODE=AFFE_MODELE(MAILLAGE=MAIL,

AFFE=_F(TOUT='OUI',

17/21

PHENOMENE='MECANIQUE', MODELISATION='3D',),); MATE=AFFE_MATERIAU(MAILLAGE=MAIL, AFFE=_F(TOUT='OUI', MATER=MA,),); CHAR=AFFE_CHAR_MECA(MODELE=MODE, DDL_IMPO=(_F(GROUP_MA='fix', DX=0.0, DY=0.0, DZ=0.0,), _F(GROUP_MA='press', DX=0.0, DY=0.0,),),); loadP=AFFE_CHAR_MECA(MODELE=MODE, PRES_REP=_F(GROUP_MA='press', PRES=100,),); contact=DEFI_CONTACT(MODELE=MODE, FORMULATION='CONTINUE', ZONE=_F(GROUP_MA_MAIT='contBase', GROUP_MA_ESCL='contBar', CONTACT_INIT='OUI',),); ramp=DEFI FONCTION(NOM PARA='INST',VALE=(0,0, 1,1,),); inst=DEFI_LIST_REEL(DEBUT=0.0, INTERVALLE=_F(JUSQU_A=1.0, PAS=0.2,),); RESU=STAT_NON_LINE(MODELE=MODE, CHAM_MATER=MATE, EXCIT=(_F(CHARGE=CHAR,), _F(CHARGE=loadP, FONC MULT=ramp,),), CONTACT=contact, COMP_ELAS=_F(RELATION='ELAS',), INCREMENT=_F(LIST_INST=inst,), NEWTON=_F(REAC_ITER=1,),); RESU=CALC_ELEM(reuse =RESU, MODELE=MODE, CHAM_MATER=MATE, RESULTAT=RESU, OPTION='EQUI_ELNO_SIGM',);

```
RESU=CALC NO(reuse =RESU,
           RESULTAT=RESU,
           OPTION=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM',),);
IMPR RESU(FORMAT='MED',
        UNITE=80,
        RESU=_F(MAILLAGE=MAIL,
               RESULTAT=RESU,
               NOM_CHAM=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM','DEPL',),);
FIN();
DEBUT();
MA=DEFI_MATERIAU(ELAS=_F(E=2.0e11,
                     NU=0.343,),);
MAIL=LIRE_MAILLAGE(FORMAT='MED',);
MAIL=MODI_MAILLAGE(reuse =MAIL,
                MAILLAGE=MAIL,
                ORIE_PEAU_3D=_F(GROUP_MA='press',),);
newMesh=CREA MAILLAGE(MAILLAGE=MAIL,
                   CREA_POI1=_F(NOM_GROUP_MA='spElmt',
                              GROUP_NO='addSP',),);
MODE=AFFE MODELE(MAILLAGE=newMesh,
              AFFE=(_F(TOUT='OUI',
                      PHENOMENE='MECANIQUE',
                      MODELISATION='3D',),
                   _F(GROUP_MA='spElmt',
                      PHENOMENE='MECANIQUE',
                      MODELISATION='DIS_T',),),);
MATE=AFFE MATERIAU(MAILLAGE=newMesh,
                AFFE=_F(TOUT='OUI',
                       MATER=MA,),);
softSp=AFFE_CARA_ELEM(MODELE=MODE,
                   DISCRET=_F(CARA='K_T_D_N',
                            GROUP_MA='spElmt',
                            VALE=(1.0e5,1.0e5,1.0e5,),);
CHAR=AFFE CHAR MECA(MODELE=MODE,
                 DDL_IMPO=(_F(GROUP_MA='fix',
                            DX=0.0,
```

DY=0.0, DZ=0.0,), _F(GROUP_MA='press', DX=0.0, DY=0.0,),); loadP=AFFE_CHAR_MECA(MODELE=MODE, PRES_REP=_F(GROUP_MA='press', PRES=100000,),); contact=DEFI_CONTACT(MODELE=MODE, FORMULATION='CONTINUE', ITER_GEOM_MAXI=30, ZONE=_F(GROUP_MA_MAIT='contBase', GROUP MA ESCL='contBar', CONTACT_INIT='NON',),); ramp=DEFI_FONCTION(NOM_PARA='INST',VALE=(0,0, 1,1,),); inst=DEFI LIST REEL(DEBUT=0.0, INTERVALLE=_F(JUSQU_A=1.0, PAS=0.1,),); RESU=STAT NON LINE(MODELE=MODE, CHAM MATER=MATE, CARA_ELEM=softSp, EXCIT=(_F(CHARGE=CHAR,), _F(CHARGE=loadP, FONC MULT=ramp,),), CONTACT=contact, COMP_ELAS=_F(RELATION='ELAS',), INCREMENT=_F(LIST_INST=inst,), NEWTON=_F(REAC_ITER=1,), CONVERGENCE=_F(ITER_GLOB_MAXI=20,),); RESU=CALC_ELEM(reuse =RESU, MODELE=MODE, CHAM_MATER=MATE, RESULTAT=RESU, OPTION='EQUI_ELNO_SIGM',); RESU=CALC_NO(reuse =RESU, RESULTAT=RESU, OPTION=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM',),); IMPR_RESU(FORMAT='MED', UNITE=80, RESU=_F(MAILLAGE=MAIL,

RESULTAT=RESU, NOM_CHAM=('SIGM_NOEU_DEPL','EQUI_NOEU_SIGM','DEPL',),);

FIN();

-----ここ。 ------ここまで-----ここまで------