

H3-Flameの数値解析例 (FLUENT + original solver) H2:N2=50:50 (vol.) Fuel co-flow Air Temp. OH (mass fraction) Diameter of fuel nozzle, D 8mm 3.0e-4 bulk velocity at fuel nozzle 34.5m/s 1500 co-flow velocity 0.2m/s **Reynolds** number 10000 2.0e-4 1.0e-4 000 モンテカルロ粒子の解析結果 ※ 解析にはFluent(ANSYS Co.)を用い, 乱流モデルにはrealizable k-e modelを適用 ※ 新たな燃焼モデルを構築し、火炎の浮 ____ D 16D き上がりの予測精度向上を図る

PEFCの解析を行う際の課題

PEFCの解析においてOFに組み込むべきモデル は大きく以下の2つ:

- 国電気化学反応モデル 過電圧(抵抗のこと)

 電流密度 水素の消費
- ロ 触媒層,ガス拡散層(両者とも多孔質体)

PEFC性能解析モデルの流動場支配方程式

Convection terms -> QUICK, Time terms -> Implicit

とりあえず, どうしよう...

- reactingFoamをベースにする! 化学種の輸送解析モデル(化学反応を含む) 乱流 温度計算
- → 層流
- → 化学反応は止める。輸送部分のみ流用。 今回考える化学種は水素と窒素のみ。
- → PEFCの運転温度70℃一定と仮定。
 温度計算を止める。
 電気化学反応の計算の時のみ温度を使用。
- → 水は十分に加熱されており, PEFC全体で十分に供給されていると仮定。

ちょっとその前に… OpenFOAM解析の妥当性の検証 (1)

ipemSimpleFoamの構成

		And And		247		4.0	45.00	C1
-rwxr-xr-x	1	taka	staff	247	5	18	15:28	Cleaner
drwxr-xr-x	4	taka	staff	204	6	14	18:21	Make
-rw-rr	1	taka	staff	2930	5	18	15:28	PEM.H
-rw-rr	1	taka	staff	6049	5	18	15:28	PEMI.H
-rw-rr	1	taka	staff	110	5	18	15:28	ReadMe.txt
-rw-rr	1	taka	staff	1157	5	18	15:28	Specie.H
-rw-rr	1	taka	staff	1540	5	18	15:28	Speciel.H
-rw-rr	1	taka	staff	200	6	16	20:17	UEan.H
-rw-rr	1	taka	staff	1061	6	16	20:18	YEan.H
-rw-rr	1	taka	staff	52800	5	18	15:28	blockMeshDict
-rw-rr	1	taka	staff	157	6	17	15:20	<u>calcMole.</u> H
-rw-rr	1	taka	staff	1452	5	18	15:28	calcPEM.H
-rw-rr	1	taka	staff	1875	5	18	15:28	compressibleCreatePhi.H
-rw-rr	1	taka	staff	209	5	18	15:28	constants.H
-rw-rr	1	taka	staff	2637	6	17	14:14	createFields.H
-rw-rr	1	taka	staff	587	5	18	15:28	hEqn.H
-rw-rr	1	taka	staff	3876	6	16	20:20	<pre>ipemSimpleFlow.C</pre>
-rw-rr	1	taka	staff	216	6	14	18:19	<pre>ipemSimpleFlow.dep</pre>
-rwxr-xr-x	1	taka	staff	7942	5	18	15:28	massCalc.ods
-rwxr-xr-x	1	taka	staff	10809	5	18	15:28	mesher.rb
-rwxr-xr-x	1	taka	staff	10869	5	18	15:28	mesher.rb.org
-rw-rr	1	taka	staff	996	6	16	20:18	pEqn.H
-rw-rr	1	taka	staff	3035	5	18	15:28	readPEMProperties.H
-rwxr-xr-x	1	taka	staff	526	5	18	15:28	run.sh
drwxr-xr-x	8	taka	staff	272	6	16	10:14	serpentine
areenAnnle	in	omÇimn	Flow	taka¢ 🔳				