OpenFOAMによる 軸対称流の解析2 第5回オープンCAE初心者勉強会 IT, 2011年6月18日

発表内容

- 解析対象
- wedgeにおける注意点
 - checkMeshで見つかったエラー
- 計算ケース
- 解析結果
- 今後の予定
- 参考情報

- 実験結果:オリフィス自由噴流の流動解析 機論(B)74巻737号(2008)
- Re= u_m d₀/v=3000, 5000, 7000, 10000, 15000

wedgeにおける注意点

<u>checkMeshの抜粋</u>

Checking geometry...

Overall domain bounding box (-0.5 0 -0.00872388) (0.5 0.19981 0.00872388)

Mesh (non-empty, non-wedge) directions (1 1 0)

Mesh (non-empty) directions (1 1 1)

Wedge wedge_back with angle 2.49999 degrees

***Wedge patch wedge_back not planar. Point (-0.5 0.179829 -0.00785149) is not in patch plane by 3.32641e-08 meter.

Boundary openness (-1.67935e-18 -2.7211e-15 -1.11438e-13) OK.

Max cell openness = 3.09437e-16 OK.

Max aspect ratio = 39.3702 OK.

Minumum face area = 1.21049e-09. Maximum face area = 0.000169954. Face area magnitudes OK.

Min volume = 2.99493e-13. Max volume = 8.49768e-07. Total volume = 0.00174288. Cell volumes OK.

Mesh non-orthogonality Max: 3.26561e-05 average: 0

Non-orthogonality check OK.

Face pyramids OK.

```
Max skewness = 0.330796 OK.
```

Failed 1 mesh checks.End

convertToMeters 0.001;

Vertices

(

(-500 0 0)//0

(-500 4.995241 -0.218096)//1

(-500 5.994289 -0.261716)//2

(-500 99.904822 -4.361938)//3

(-400 0 0)//4

(-400 4.9952411079 -0.2180969368)//5

 $(-400 \quad 5.9942893295 - 0.2617163242) //6$

(-400 99.9048221582 -4.3619387365)//7

(-400 199.8096443164 -8.7238774731)//8

(0 0 0)//9

- 小数点以下6桁では、前スライド のエラーが出る。
- ─ 小数点以下10桁であれば、エ ラー出ない

計算ケース CR:1.00

	RANS model	fvSchemes	fvSolution	relaxationFactors	Result
case1-1	Standard k-epsilon	upwind	GAMG	0.3, 0.7, 0.7, 0.7	converged
case1-2a	Standard k-epsilon	linear, limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	converged
case1-2b	Standard k-epsilon	linear	GAMG	0.1, 0.1, 0.1, 0.1	not converged
case1-3	Standard k-epsilon	TVD	GAMG	0.3, 0.7, 0.7, 0.7	converged
case1-4	RNG k-epsilon	upwind	GAMG	0.3, 0.7, 0.7, 0.7	converged
case1-5	RNG k-epsilon	linear	GAMG	0.3, 0.5, 0.4, 0.4	diverged
case1-5a	RNG k-epsilon	linear, limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	converged
case1-5b	RNG k-epsilon	linear	GAMG	0.1, 0.1, 0.1, 0.1	diverged
case1-6	RNG k-epsilon	TVD	GAMG	0.3, 0.7, 0.7, 0.7	converged
case1-7	Realizable k-epsilon	upwind	GAMG	0.3, 0.5, 0.4, 0.4	not converged
case1-8a *1	Realizable k-epsilon	linear, limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	not converged
case1-8e *2	Realizable k-epsilon	upwind	GAMG	0.3, 0.5, 0.4, 0.4	converged
case1-9	Realizable k-epsilon	TVD	GAMG	0.3, 0.7, 0.7, 0.7	not converged
case1-10	k-omega SST	upwind	GAMG	0.3, 0.7, 0.7, 0.7	converged
case1-11	k-omega SST	linear	GAMG	0.3, 0.5, 0.4, 0.4	converged
case1-11a	k-omega SST	linear, limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	converged
case1-12	k-omega SST	TVD	GAMG	0.3, 0.7, 0.7, 0.7	converged

*1 mapFields case1-8e, *2 mapFlelds case1-1

計算ケース CR:0.11

	RANS model	fvSchemes	fvSolution	relaxationFactors	Result
	Standard k-				
case4-1	epsilon	upwind	GAMG	0.3, 0.7, 0.7, 0.7	converged
	Standard k-	linear,			
case4-2a	epsilon	limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	converged
	Realizable k-				
case4-7	epsilon	upwind	GAMG	0.3, 0.5, 0.4, 0.4	converged
Case4-10	k-omega SST	upwind	GAMG	0.3, 0.7, 0.7, 0.7	converged
Case4-11	k-omega SST	linear	GAMG	0.3, 0.5, 0.4, 0.4	converged
		linear,			
case4-11a	k-omega SST	limitedLinear	GAMG	0.3, 0.5, 0.4, 0.4	converged
Case4-12	k-omega SST	TVD	GAMG	0.3, 0.7, 0.7, 0.7	converged

divSchemes- upwind, linear

divSchemes					
{					
default none;					
div(phi,U) Gauss upwind;					
div(phi,k) Gauss upwind;					
div(phi,epsilon) Gauss upwind;					
// div(phi,omega) Gauss upwind;					
div((nuEff*dev(grad(U).T()))) Gauss linear;					
}					
divSchemes					
{					
default none;					
div(phi,U) Gauss linear;					
div(phi,k) Gauss linear;					
div(phi,epsilon) Gauss linear;					
// div(phi,omega) Gauss linear;					
div((nuEff*dev(grad(U).T()))) Gauss linear;					

- linear

upwind

divSchemes- limitedLinear, TVD

divSchemes default none; div(phi,U) Gauss linear; div(phi,k) Gauss limitedLinear 1; div(phi,epsilon) Gauss limitedLinear 1; div(phi,omega) Gauss limitedLinear 1; div((nuEff*dev(grad(U).T()))) Gauss linear; divSchemes default none; div(phi,U) Gauss limitedLinearV 1; div(phi,k) Gauss limitedLinear 1; div(phi,epsilon) Gauss limitedLinear 1; div(phi,omega) Gauss limitedLinear 1; div((nuEff*dev(grad(U).T()))) Gauss linear;

Linear + limitedLinear

> TVD

-1.0 0 1.0

 x/d_0

1

-1.0 1.0 0 2 Exp — 1.5 k-omega upwind k-omega linear — k-omega limitedLinear —— 0 k-omega TVD —— 1 r/d 0.5 0 0.2 9 3 7

5

r/d

Realizable upwind -0 0.5 椞 А 0 0.2 3 5 9 7 1 x/d_0

 r/d_0

• CR:0.11, Re=15000

-1.0 0 1.0

まとめ

実験結果との比較

- CR: 1.00では、軸中心の軸方向速度の差が比較的大きい
 - 境界条件、メッシュの影響か
- CR: 1.00では、乱流モデルによる結果の差は、ほとんど無い
- CR: 0.11では、k-omega SSTが最も良い結果を示した
- CR: 0.11において、Standard, RNG, Realizableでは縮流による、噴流 外縁の増速を予測できていない。

その他

- k-omega SSTは収束しやすい
- Realizable k-epsilonは収束しにくい
 - 結果もあまり良くない

今後の予定

- kの分布の比較
- CR: 0.67, 0.44の解析
 - マクロを使ったblockMeshでのメッシュ作成

• pyFoam

http://openfoamwiki.net/index.php/Contrib_PyFoam

Adobe Acrobat Document

FrontWorkBench

http://www.ciss.iis.utokyo.ac.jp/project/rss/software/12_info.html

図2: FrontWork Benchでの解析実行例

• pythonFlu

http://pythonflu.wikidot.com/

- pythonを使って、解析処理を自動化できる
- pythonでOpenFOAM (C++)をwrappingできる
 - pythonでOpenFOAMのコードを呼び出せる
- SalomeとのIntegrationができる

