2015/02/21 OpenCAE勉強会@岐阜

FrontISTR 演習例題1 キャップの静弾性解析

OpenCAE学会 SH

- 概要:キャップ部品に圧力をかけた場合の応力について解析を行ないます。
- 目的:弾性静解析事例にてCADデータ読みこみ ~メッシュ作成、ポスト処理までRevocap プリポ スト操作手順をマスターする。
- 参考:本演習はRevocap プリポストのチュートリアル P.35 ~51に基づいているので、こちらの資料をあわせて参照ください。

CADデータ読み込み

File → ImportCAD からCADの中間形式データ(Step, Iges)形式のデータを読み出ししま す。演習1ではRevocap インストール先ディレクトリのdata/CAD の下にある"cap.igs" を読み込みます

REVOCAP_PrePost Ver. 1.6.08 for FrontISTR
e <u>V</u> lew <u>D</u> rawing <u>L</u> ayout
!≜;>> 예석 티키티키키티 이★□
Copen CAD/Patch File Directory: CAD Can.igs Column.igs Column.i

メッシュ生成1

形状データ TetMeshからAdventureTet Meshを呼び出し、メッシュ生成ボタンを押して メッシュを生成します。チュートリアルマニュアルではパラメータを少し変更してますが本 演習ではデフォルト値をそのまま利用することとします

Eile View Drawing Layout	Hole - E X
<u>ĕa≯</u> @ <u>a</u> <u>i</u> <u>i</u> <u>i</u> <u>a</u> <u>i</u> <u>a</u> <u>i</u>	
■ Mesh Generator cap ● 形状データ ● cap 切断面 - 表示巴 TetMesh	
ang max_angle TetMesh_P angg min angle TetMesh_P alp TetMesh_P max out iteration	
TetMesh_P max in iteration メッシュ生成 生成したメッシュの読み込み設定	
面分割閾値[度] 120.0 RevocapShape version 1.6.01 (2013/3/8)	_
ADVENTURE_TetMesh 節点密度制御 CAD モデル cap を読み込みました 節点密度制御をする時は、 BoundingBox: min = (-13.0884, -5.3069e-016, -13.1445), max = (13.0884, 14.986, 13.1445)	_
	Ī
Ready.	11.

DOS WINDOWが出て、メッシュ生成過程が表示されます。

メッシュ生成2

- 🗆 🗙

C:¥WINDOWS¥system32¥cmd.exe

Shape dependent density control once more

Vertex density control start once more iteration loop, change count = 1 0 Vertex density control : iteration converged

Pre-smoothing of boundary edge

	Pliant Delau	unay retriar	ngulation	start			
	outer/inner	iteration,	remained	Ξ	1	1	4532
	outer/inner	iteration,	remained	Ξ	1	2	4493
	outer/inner	iteration,	remained	1	1	3	4410
	outer/inner	iteration,	remained	=	1	4	4326
	outer/inner	iteration,	remained	=	1	5	4224
	outer/inner	iteration,	remained	Ξ	1	6	3980
	outer/inner	iteration,	remained	Ξ	1	7	3715
	outer/inner	iteration,	remained	Ξ	1	8	3445
	outer/inner	iteration,	remained	=	1	9	3274
Ê	outer/inner	iteration,	remained	Ξ	1	10	3102
Î	outer/inner	iteration,	remained	Ξ	1	11	2840
ł	outer/inner	iteration,	remained	Ξ	1	12	2614
	outer/inner	iteration,	remained	Ξ	1	13	2371

メッシュ生成3

メッシュ生成に成功するとメッシュ表示になります。以後CADデータは利用しません

材料物性編集1

材料物性値メニューから登録済材料物性のAluminumを呼びだします。これはSI単位 [Pa] で記述されているので、MPaに変更し、別の材料ALとして登録します。

境界条件の設定1-2

データ保存とFrontISTR実行

ソルバーメニューの実行を選択し 出力ディレクトリを指定します。

モデル保存ボタンを押した後 FrontISTR実行ボタンを押します。

無事設定ができていれば計算が実行されます。

計算が無事完了したらファイルメニューのOpen Result から結果ファイルを読み込みます。

出力ディレクトリに移動しmshファイル、 結果(*.res.*.*)を読み込みます。

解析結果 ミーゼス応力分布

Misesを選択し、設定ボタンを押します。カラーバー表示、コンター表示にチェックを入れます

2015/02/21 OpenCAE勉強会@岐阜 午後の部 演習

FrontISTR 演習例題その2 Hertz接触問題

OpenCAE勉強会 SH

- ・概要:円盤と平板の接触応力を解析します。
- 目的: RevocapでのFronfISTR接触解析手順をマ スターする。
- 参考:本演習はRevocap るリポストのチュート リアル P.91 ~104に基づいているので、こち らの資料をあわせて参照ください。またあわせて FronfISTR チュートリアルマニュアルP.30-31 FronfISTR ユーザマニュアルP.173-174 に説明があるので参照ください。

問題概要:円盤と平板の接触応力を解析します。 目的: RevocapでのFronfISTR接触解析手順を理解する

Hertz 接触応力理論解

Hertzの接触理論から、接触円半径aと最大せん断応力tmaxは次式で表されるらしい? (詳しくはFrontISTRユーザマニュアルVer3.5の P.173-174を確認ください)

ただし、荷重F=100、E* = E(ヤング率)/2 とする(πは円周率 ≅ 3.14)

荷重でなく、強制変位で計算しているので、凡そ 0.3mmの強制変位を与えた場合のおおよその反力合計が100Nになるということ 上式から接触半径aと最大せん断応力tmaxは下記となる

a=1.36mm 、 τ_{max} =14.2MPa

	evocapインストール先のディレクトリの下の Fstr¥data¥Hertz か FrontISTR メッシュ形式のメッシュデータを読み込みます。 ver. 1.6.08 for FrontISTR
le <u>V</u> iew <u>D</u> ra	ving <u>L</u> ayout
¥₩ @@	<u>Ljír L</u> QXD
	Open Mesh File Directory: Hertz CISS REVOCAP_PrePost 1.6 Fstr data Hertz
	File Name:

<u>MAT1</u>として <u>ヤング率 1100, ポアソン比=0.0</u>を定義します。

材料割当

計算格子→E1(この場合部材全体集合名を意味する.FrontISTR形式メッシュデータを 読み込むと問答無用でE1の名前になる)を選択し,材料にMAT1を指定

解析の種類変更

解析の種類にて非線形静解析、Ver3.3を選択します

Hertzの接触問題 境界条件 下面

下面はY方向に動かないようにYのみ拘束します

SREVOCAP_PrePost Ver. 1.6.08 for FrontISTR		. x
Eile <u>V</u> iew <u>D</u> rawing Layout	Help	- 5 X
≝≜炒碜⊗≟ѧ斗⊑斗Ӻҍ		
Faceu_3		
Face0_4		
BOUNDARY		
BNDO		
BND1		
CLOAD		
「節点拘束・変位」		
マリスで範囲指定「		
Γ×		
₩ y 0.0		
Γz	y y	
時間変化		
這加更新削除		
	追加しました => BND1	1
	NODEGROUP VECTOR3:データの個数 = 22	
	值:[NaN, -0.306, NaN]	
		-
N N	1	
Lineady.		

Hertzの接触問題

境界条件 側面

側面は対称としてX方向変位のみ拘束

乙方向自由度の全拘束

DIM メニューのZをチェックして更新ボタンを押します。 この操作によりZ方向変位の全自由度が拘束されます(2次元問題になる)

面をマウスでクリックした後に 各面のボタンを押す

マスター面

接触面ペア定義

平板の上面をマスター面、円盤の下面をスレーブ面としてコンタクトペア(接触面対)の定義を行います

最後に追加ボタン を押すと Contact Pair の下にCPOが現れる

マスター面

Hertzの接触問題 コンタクトペアの 接触条件定義1

先ほど定義した接触面の接触条件(摩擦係数など)を定義します。 最初にCONTACTを選択、次に有効なCONTACT PAIRでCPOを選択

Hertzの接触問題 コンタクトペアの 接触条件定義2

ここではfcoef (摩擦係数) に0.0 を指定します。その他は特に指定せず 表に追加を選択します。これで接触条件定義は完了です。

Stepの定義

接触解析は境界非線形の非線形解析になるため、有限要素法では増分解析手法と収 束反復手法で計算を進めるため全体をいくつの増分(Substep)数に分割し、収束計算を どの程度の誤差で最大の反復回数を何回行うかなどの定義などが必要になります

ここではマニュアルにしたがい

CONVERG=1e-4 SUBSTEPS=5 MAXITER=500

を指定します。

このStepで有効な境界条件の選択で全ての境界条件を追加します

STEP定義3

Hertzの接触問題 接触解析アルゴリズム定義 (ソルバ-メニューの解析設定)

接触アルゴリズムは<u>拡張</u>ラグランジュ乗数法を 選択します

保存と解析実行

解析結果ファイル読み込み

SUBSTEPのある解析を行ったため、結果ファイルが5個出てきますが 1-4は途中経過のため不要です。0.5の結果だけ読み込みます

コ Eile View Drawing Layout	
□ FrontISTR Pre Hertz.msh ▲ □ 計算格子 □ E1 □ Face0_5 □ 5000 10	
Pace0_10 - Face0_6 - Face0_7 - Face0_8 - Face0_8 - Face0_8 - Face0_8 - Face0_8 - Face0_7 - Face0_8 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_8 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_7 - Face0_8 - Face0_7 - Face0_7	 Open Result File Directory: hertz hertz FistrModel.res.0.1 FistrModel.res.0.2 FistrModel.res.0.3 FistrModel.res.0.4 FistrModel.res.0.5
<u>モデル保存</u> FrontISTR 実行 ノ	File Name: "FistrModel.res.0.5" QK File Filter: HECMW res (*.res.*.*) Cancel

Hertzの接触問題

解析結果

変位

Hertzの接触問題 解析結果 ミーゼス応力

Hertzの接触問題

解析結果

(参考) ABAQUS -studentedition での解析結果

参考に同じメッシュにてabaqus のStudent edition を使った解析では以下の 結果が得られました。

接触半径=1.517mm

最大せん断応力S12=29.776MPa

以上で本演習は完了です。