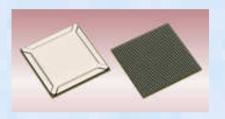
Salomeとその他 のオープンソースとの連携

OpenCAE学会員 SH

本日の発表内容

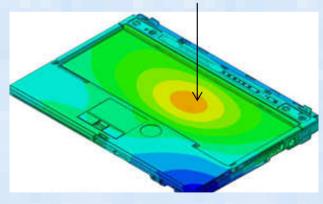
- 電気電子機器向けの解析事例
- 構造系オープンソース
- Salomeとその他解析ツールとのデータ交換
- オープンソースによる解析事例
- ・まとめ


電気電子機器向けの解析事例

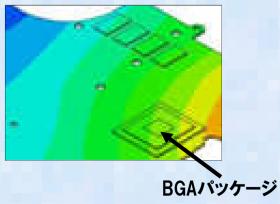
ノートPCの圧迫・熱応力時信頼性対策

◆圧迫など解析によるパッケージに剥離のないような構造提案 ・鉛フリー半田の採用や薄型構造の進展により、底面圧迫で搭載BGA剥離 発生有無の解析検証の重要性が増大。。。

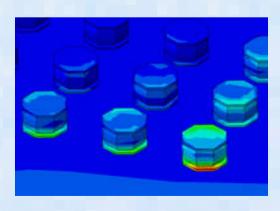
QFPパッケージ



BGAパッケージ


◇具体的な対策

- ・カバー形状の剛性強化など
- ・パッケージ搭載位置の変更など

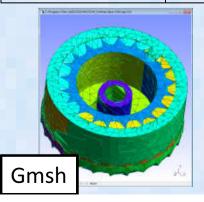

圧迫荷重負荷

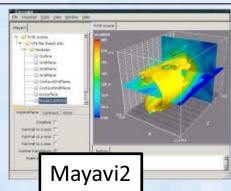
BGA圧迫解析全体変形図

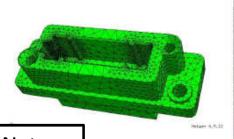
BGA圧迫解析基板変形図

BGA圧迫解析BGA応力分布

企業におけるオープンソース利用について

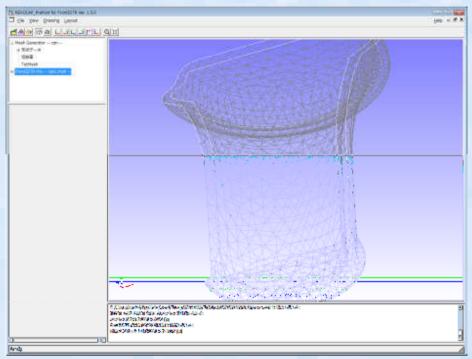

- 目的
 - 商業ソフトの代替(コストダウン)
 - 教育用途
 - パラメータSTUDYなど多数条件の実施
 - 類似設計評価などの定型パタンの解析
 - 大規模モデルでの解析
 - 既存ソフトでは対応できない機能の解析
- 課題
 - 機能が保障されない、バグあり
 - 教育サポートがない
 - <u>既存使用ツール混在、単一ツールでクローズしない</u>ため、複数ツール間連携が必要

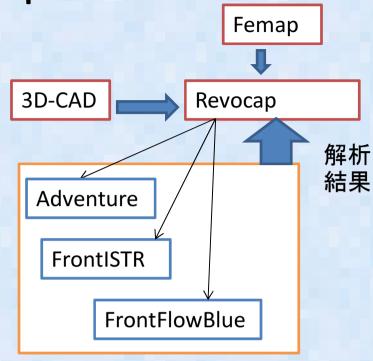



Salomeを例とした商業ソフト、オープンソース間データ交換について検討

OSS 3D-CAD/可視化ツール/メッシャ

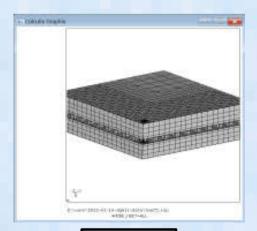
名前	URL	内容	License
Gmsh	wwww.geuz.org/gmsh	2D/3D自動メッシュ・形状 作成	GPL
MayaVi	mayavi.sourceforge.net	データ可視化	BSD
MayaVi2	svn.enthought.com/enthought	データ可視化	OSL
Netgen	www.hpfem.jku.at/netgen	3D自動メッシュ	OSL
ParaView	www.paraview.org	データ可視化	BSD
Salome	wwww.salome-platform.org	2D/3D-CAD, 自動メッシュ	GPL
FreeCAD	sourceforge.net/apps/mediawiki/fre e-cad	3DパラメトリックCAD	LGPL
GoogleSketchup	sketchup.google.com/intl/ja/produc t/gsu.html	3Dモデラー	Free
Revocap	www.ciss.iis.u-tokyo.ac.jp/riss/dl/	3D自動メッシュ	独自
LS-PrePOST	www.lstc.com/lspp/ftp.html	LS-Dyna用のフリープリポ スト	Free

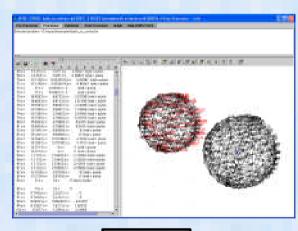


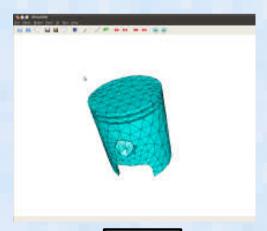


Netgen

Revocap

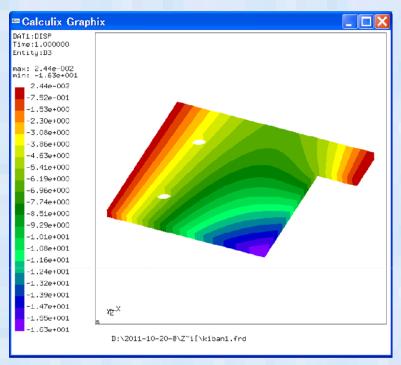


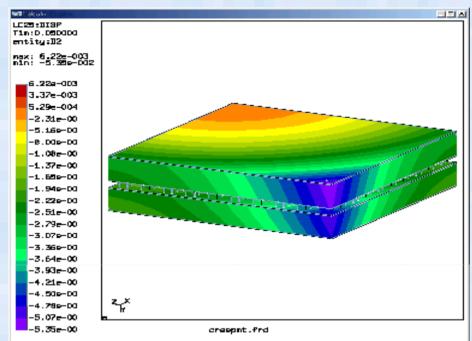

- 東大の提供するオープンソースソルバの共通GUI(プリポストと連成解析カップラー)
- - -CADのデータ入力(IGES, STEP, BrepSolid, STL, Adventure PCM PCH, rnf(独自中間形式) (cad 部分はOpenCASCADEのライブラリ)
 -メッシュ作成(Adventure-TetMeshを利用)← 致命的欠陥


 - -メッシュデータ入力(Adventure-TETMESh(msh), FrontISTR(msh), Femap Neutral(neu))
 -境界条件設定(メッシュベースで設定、幾何形状に設定は不可;メッシ後、要素の面グループを自動抽
 - -材料割り当て:材料物性ライブラリ
 - 解析データ出力(Adventure, FrontISTR, FrontFlowBlue, FrontMagnetic) 解析結果表示(上記と同じ)
- 利点: Windows上で動作、日本メニュー、シンプルで使いやすい。Adventureのプリに使える
- 欠点: メッシャーとして10年以上前のAdventureのメッシャーしかサポートしていない

オープンソース構造解析ソルバ

名前	URL	内容	License
Calculix	www.calculix.de	Abaqus的非線形構造解析	GPL
CodeAster	www.code-aster.org	非線形構造解析	GPL
FELyX	felyx.sourceforge.net	構造解析	GPL
Impact	impact.sourceforge.net	陽解法非線形解析ソルバ	GPL
Tahoe	sourceforge.net/projects/tahoe/	構造解析	OSL
WARP3D	cern49.cee.uiuc.edu/cfm/warp3d.html	構造解析(き裂解析)	GPL
Elmer	www.csc.fi/english/pages/elmer	連成解析ソルバ(構造解析)	GPL
Adventure	adventure.sys.t.u-tokyo.ac.jp/jp/	大規模構造解析ソルバ	独自
FrontISTR	www.ciss.iis.u-tokyo.ac.jp/riss/dl/	大規模構造解析ソルバ	独自

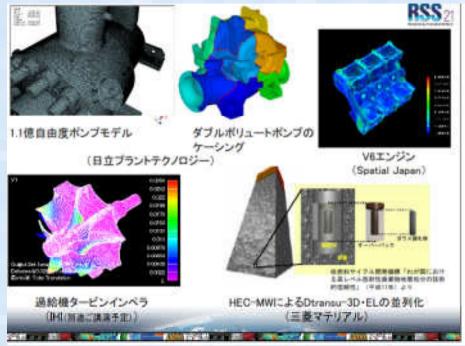



Calculix

Impact

Elmer

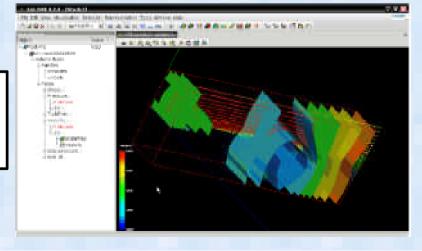
Calculixについて


基板の反り解析

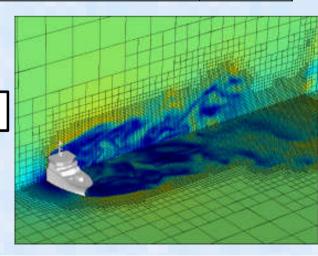
電子パッケージの反り解析

- 商用ソフトABAQUSと同様の入力書式をもつオープンソース ABAQUSを仕事で使っている人は文法を勉強しないでそのまま使える。知らない人もABAQUSのマニュアルを見れば大体使い方が分かる。 (テキスト入力ベースのモデラー, メッシャー, ソルバ, POSTを包含した非線形構造解析ソフト、一部流体解析も可能)
- http://www.bconverged.com/calculix/ Windowsの実行バイナリを公開
- 非線形(大変形、接触解析、材料非線形(塑性、クリープ、温度依存etc)が可能
- 課題;あまり大規模な計算(10万メッシュ以上?)には対応していない模様

FrontISTRについて



- FrontISTRとは東大が国プロで開発しているオープンソースソフトウェア
- 有限要素法構造解析ソフトウェア各種非線形解析機能を有する
- 分散領域メッシュ+反復法ソルバによるノード間並列解析機能を有する
- ライセンスフリー(商業利用時は独自契約が必要)
- プリはRevocap, MeshはABAQUSに似た独自書式
- 変形・応力解析機能
 - -線形静解析, 非線形静解析, 大変形解析
 - -材料非線形解析(弾塑性・超弾性・粘弾性・クリープ・ユーザ定義材料)
 - -接触解析(拡張ラグランジュ、ラグランシュ法)
 - -陽解法は非接触解析のみ
 - -陰的時間積分法による接触を考慮した過渡解析(衝突)をサポート予定(2012/6~?)


オープンソース流体解析ソルバ

名前	URL	内容	License
OpenFOAM	www.opencfd.co.uk/openfoam	汎用流体解析(FVM toolBox)	GPL
CodeSaturne	rd.edf.com	汎用流体解析(Salome 連携)	GPL
FEATFlow	www.featflow.de	非圧縮性NS方程式ソルバ	GPL
Gerris	gfs.sourceforge.net	非圧縮性NS/Euler方程式ソル バ	GPL
FrontFlowRed	www.ciss.iis.u−tokyo.ac.jp/rss21/	熱流体解析(FVM)	独自
FrontFlowBlue	www.ciss.iis.u-tokyo.ac.jp/riss/dl/	大規模流体解析(FEM)	独自

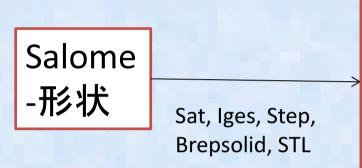
CodeSaturne -Salomeから 起動した例

Gerris

Salomeについて

- オープンソースの数値解析シミュレーションのための統合化プラットホーム (3次元モデリング(形状作成)とメッシング機能をもつ GUIのツール)
- SALOMEの公式サイト: http://salome-platform.org
- Salomeと構造解析オープンソースのCodeAsterを一体化したものがSalome-meca CodeAsterの関連モジュールとして http://www.code-aster.org/ で公開
- Dexcs-OpenFOAMを既にインストールしている人は本家のサイトからLinuxユニバーサルのtarファイルをダウンロードして展開すれば多分?動く。

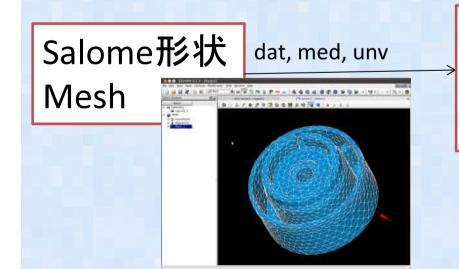
Salomeのデータ入出力①


- Salomeとデータをやり取りする方法は
 - -形状データ
 - -メッシュデータ

として2種類の方法がある。

- 形状データ入力: SAT,IGES,BREPsolid,Step
- 形状データ出力: STL,SAT,IGES,BREPsolid,Step (CADカーネル: OpenCASCADE))
- メッシュ入力: dat(Salome独自テキスト形式), med(Salome独自binary), unv(I-deas形式)
- メッシュ出力: STL, dat, med, unv

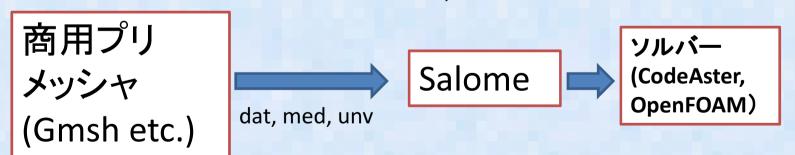
Salomeのデータ入出力②


データ出力例1: Salomeを3D-CADとして形状データだけ利用
 -想定: 3Dモデラーとして利用。メッシュ作成は他のソフトで作成する方が良い(6面体メッシュや、OpenFOAMの解析、メッシュの規則配列など)

他CAD(FreeCAD etc.) プリソフト(商用ソフトなど) メッシャ(Gmsh, Ngen, blockMesh, SnappyHex)

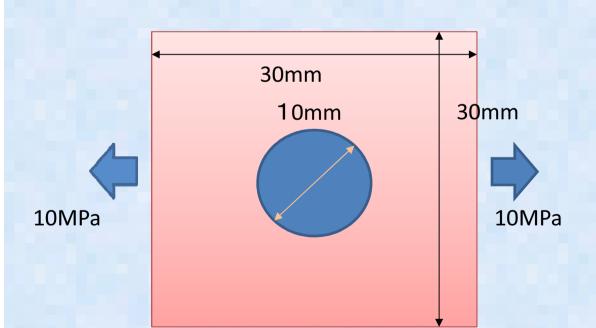
ソルバ OpenFo amなど


データ出力例2: Salomeを解析プリ(メッシャー)として利用-想定: CodeAster以外で(構造)解析を行いたい場合


プリソフト(商用ソフトなど) メッシャ(Gmsh, etc) ソルバ(Calculix, OpenFOAM etc.)

Salomeのデータ入出力③

 データ入力例: Salomeに3D-CAD形状入力-想定: Salome-Meca(CodeAster)で解析 一般的にはこのケースが一番多い

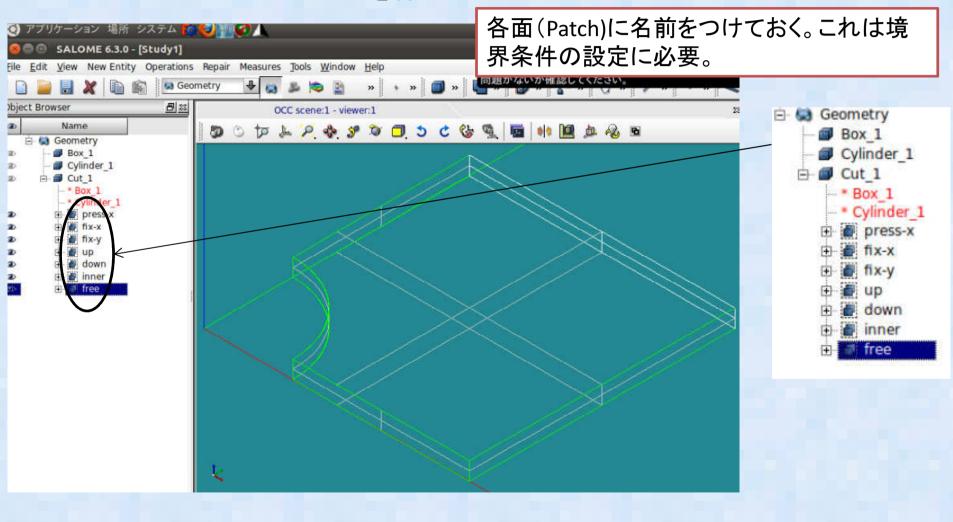


データ入力例: Salomeにメッシュデータを入力
 -想定: 商業ソフトなどでメッシュ作成済(過去に解析をしたもの、しかも複雑なメッシュデータで作り直しはしんどい)をCodeAsterで解析したい場合など

商業ソフトからはI-Deasのunv形式での出力があれば出力するか無い場合、Nastran形式などGmshで読める形式で出力する。 Gmshはmed形式出力をサポートするので、Gmsh経由でデータ転送 データ出力例2:Salomeを解析プリ(メッシャー)として利用 -メッシュデータを他のソルバに渡す例を提示

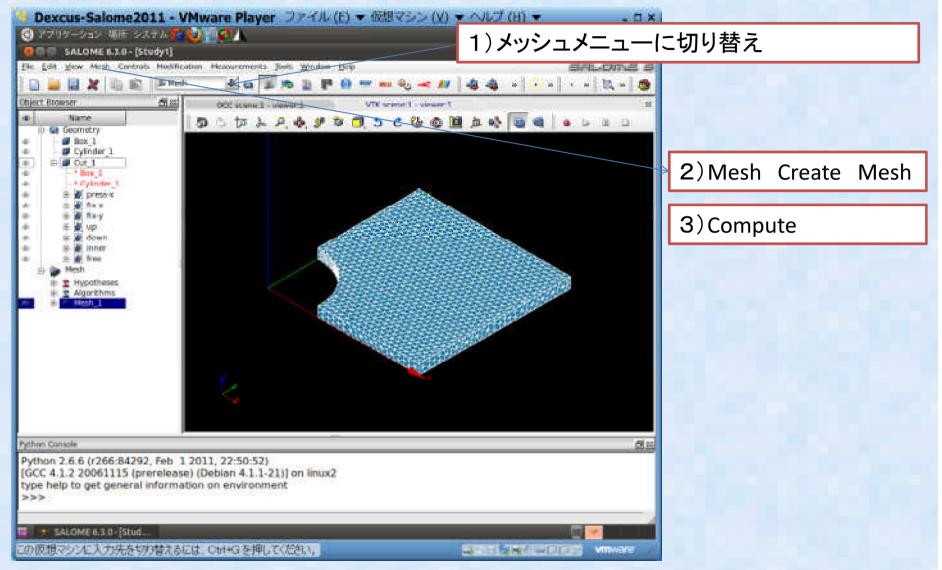
• SalomeからデータをOpenFoamへメッシュデータとして渡して、解析する例題として、以下のような穴あき平板の線形弾性応力解析

厚さ:1mm

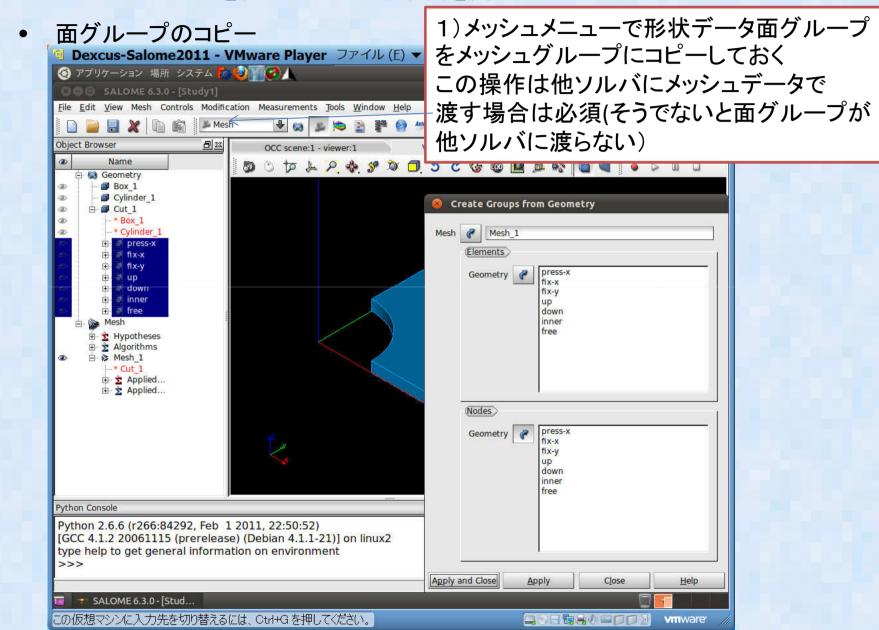

弹性率: 71000MPa

ポアソン比:0.3

OpenFOAMでは構造解析 SolidDisplacementFoamで 構造解析する


データ出力例2:Salomeを解析プリ(メッシャー)として利用 -メッシュデータを他のソルバに渡す例を提示

• SalomeはDexcs-Salome2011を利用

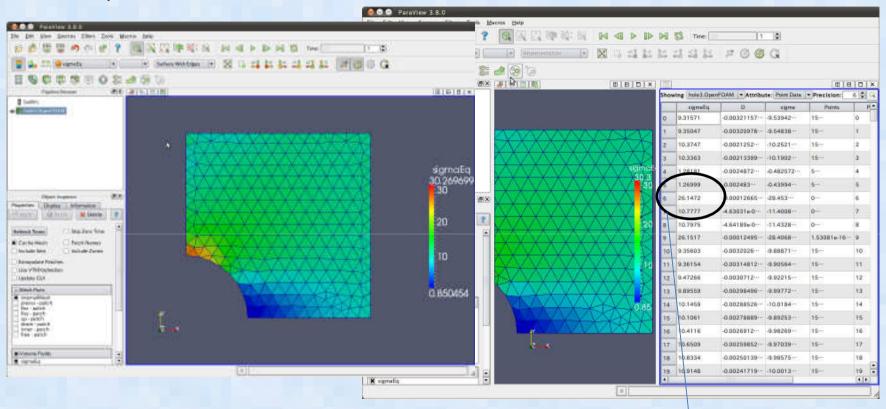


データ出力例2: Salomeを解析プリ(メッシャー)として利用 -メッシュデータを他のソルバに渡す例を提示

• Meshメニューでメッシュ作成、ここではサイズ1mm、 1次要素でメッシュ

データ出力例2: Salomeを解析プリ(メッシャー)として利用-メッシュデータを他のソルバに渡す例を提示

SalomeからOpenFOAMへのデータ変換


SalomeのメッシュデータのOpenFoamへの変換

- SalomeからOpenFoamのデータに変換するにはOpenFoamのユーティリティ ideasToFoamを使う。
- Salomeから事前にメッシュデータをIdeasのunv形式で出力しておく。
- OpenFoam作業ディレクトリを準備しておく、ここではチュートリアル例題 SolidDisplacementFoamのplateHoleの例題を作業ディレクトリに丸ごとコピーして した(何も無いとエラーで落ちる)
- 作業ディレクトリの上に**.unv ファイルを置いて、ideasToFoam を実行 constant の下のpolyMeshの中身だけ、Salomeメッシュデータに置き換えられる
- 物性値とか、境界条件は手で適時修正する

データ出力例2: Salomeを解析プリ(メッシャー)として利用 -メッシュデータを他のソルバに渡す例を提示

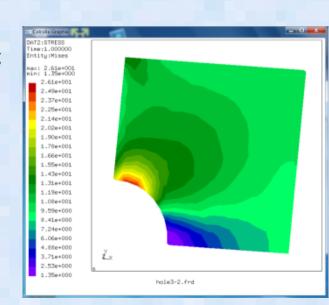
OpenFoamでの計算

•SolidDisplacementFoamで計算完了:相当応力のコンターでは最大応力は 30.26MPaとなっているが、SpredSheetで確認すると最大で26.1MPaとなっており、 Salome-meca, Calculixの計算結果とほぼ一致した

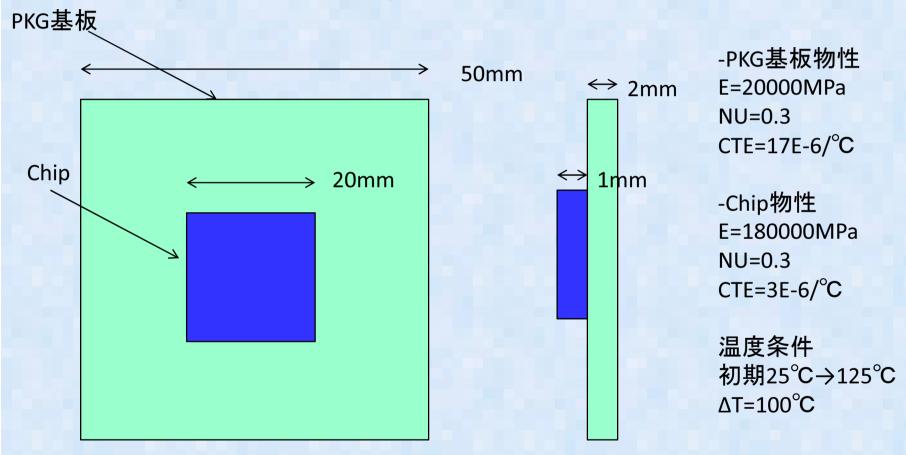
SalomeからCalculixへのデータ変換

- Calculixは http://www.bconverged.com/products.php から Downloadできる。
- SalomeからCalculix(ABAQUS)形式に出力するのはMedabaを使う。
 http://www.caelinux.org/wiki/index.php/Proj:MedAba
 からLinuxのソースと
 実行バイナリがダウンロードできる。
- Salomeからは中間ファイル **.med で出力する(例:hole1.med)。 Calculix(ABAQUS)形式の **.inp に変換してくれる。
- 使い方

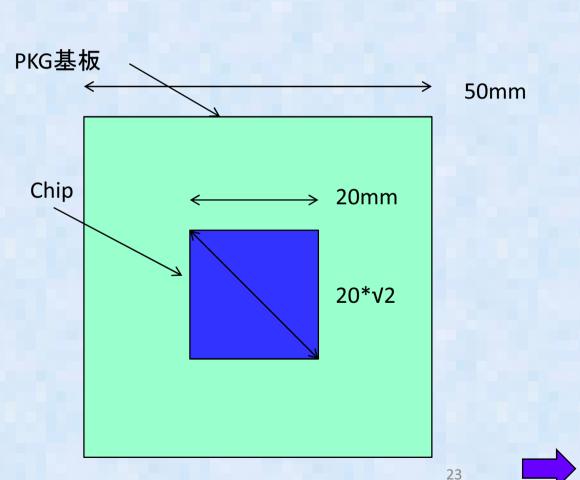
sakai-desktop:/mnt/hgfs/Dwork/medaba\$./medaba10-64bit hole1


のようにMedファイルを置いて端末からコマンド実行する。拡張子(.med)ははずす。

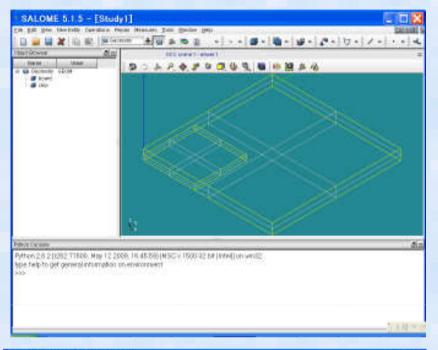
指定しないと


usage: medaba MED_filename (without extension .med)exiting のように使い方が表示

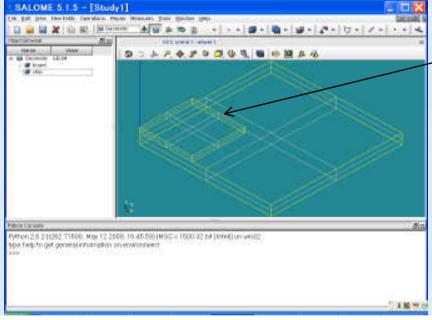
Salome-mecaと同じ拘束最大応力:26.1MPa


→ 大体Salome-Meca/OpenFOAMの結果と同じになった

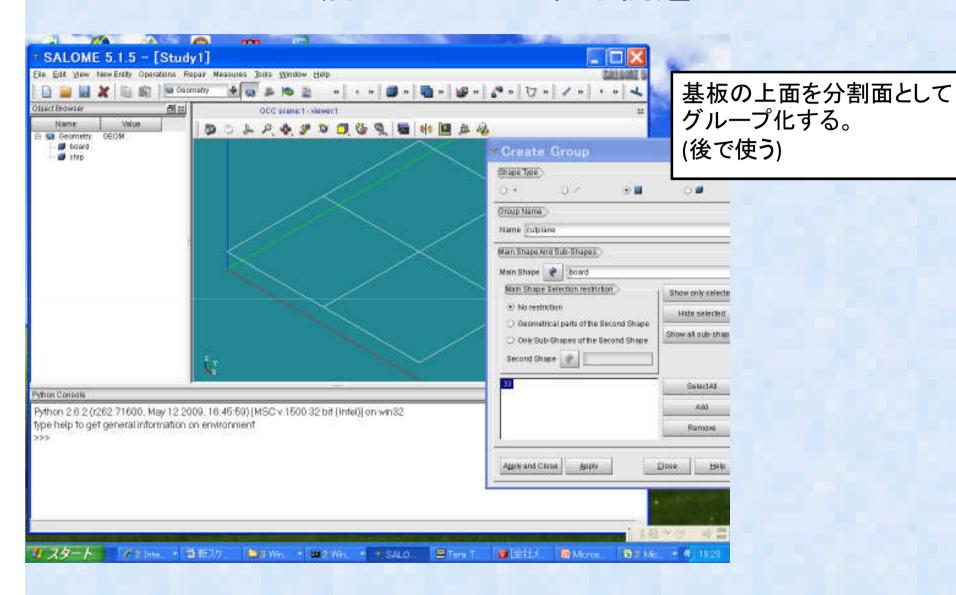
• ここでまた簡単な基板の上にチップを実装した電子パッケージの 例題で反りなどを計算し理論解と比較する。モデルはSalomeで作成し、解析はCalculixで計算する。

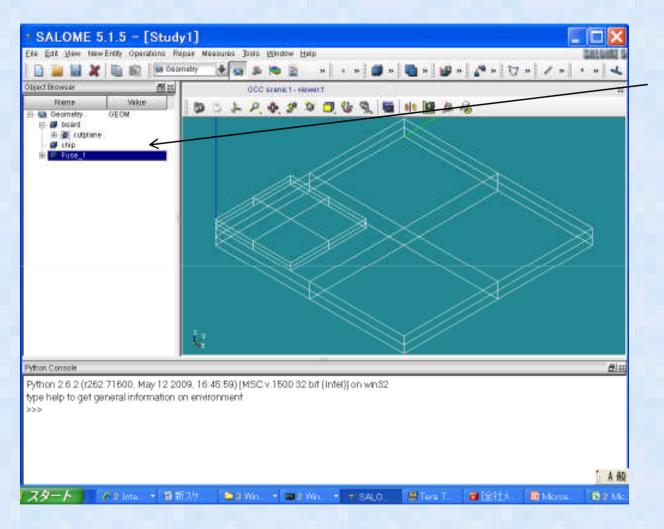


- -バイメタルの式にパラメータを代入して
- 反り理論解を計算する。L=10*V2=14.14mmで
- チップの対角長を代入

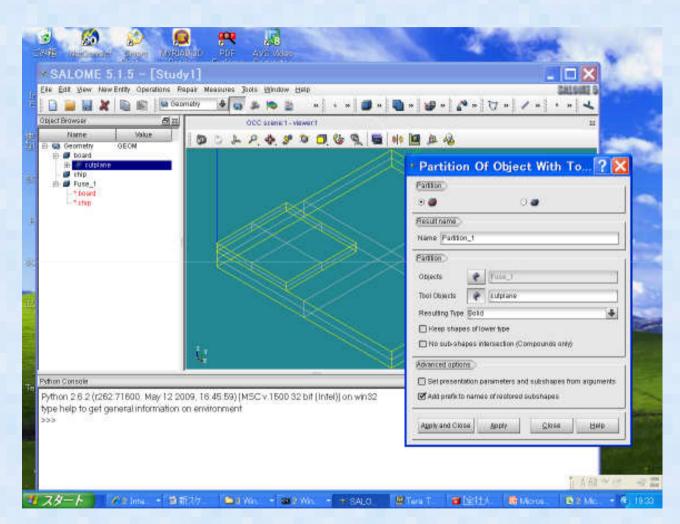


180000
20000
3.00E-06
1.70E-05
100
14.14214
1
2
0.083333
0.666667
28333.33
4.154321
-0.0674

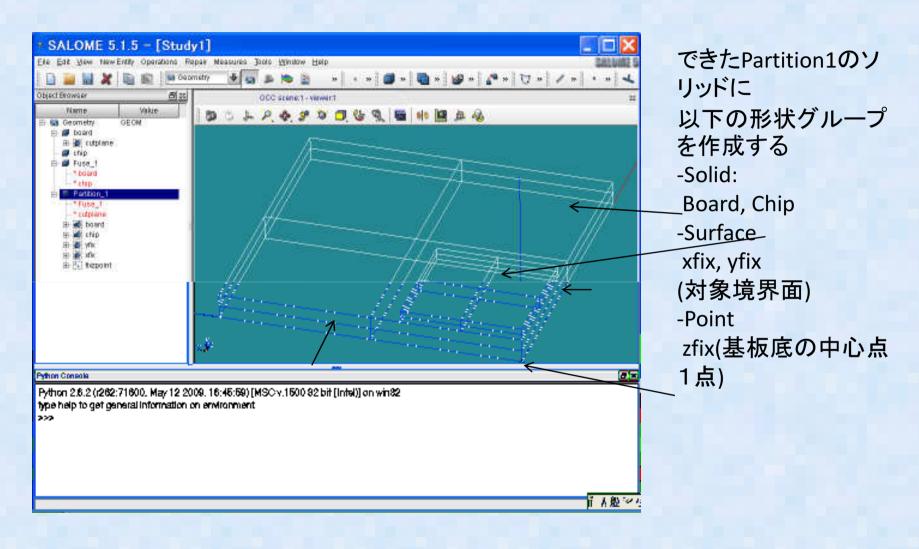

チップ部の最大反り は0.067mm

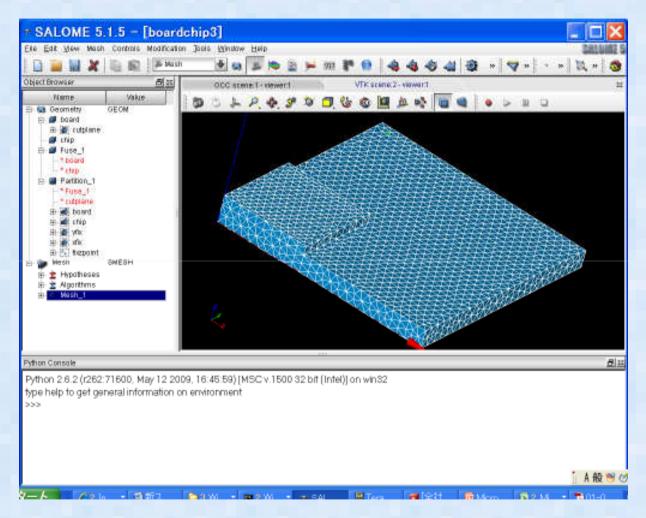


¼でモデル化しますので □25mmと□10mmの箱を 2つ作成

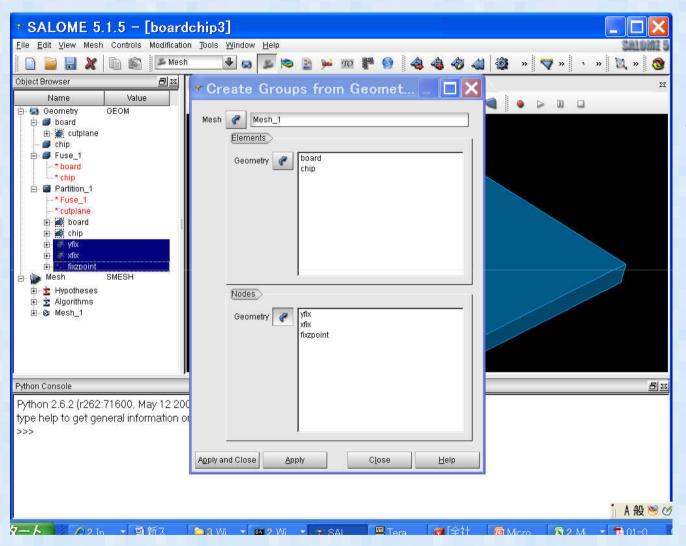


ChipをTranslateコマンドで 2mm上に移動

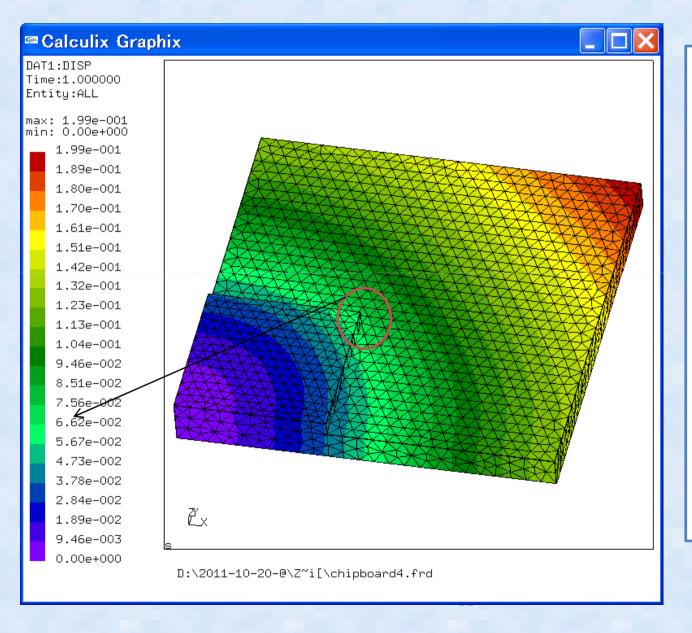




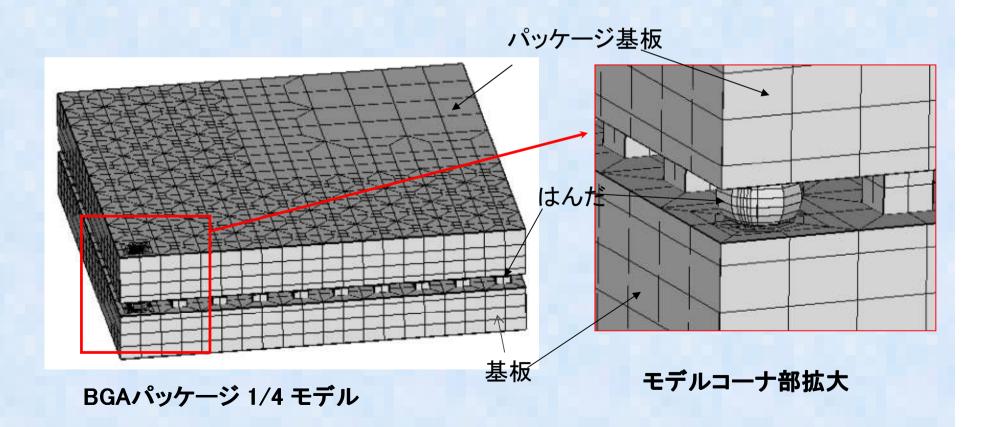
ChipとBoardを ブーリアン演算 のFuseコマンド で結合して、新 しいSolid (Fuse1)を作成 する。



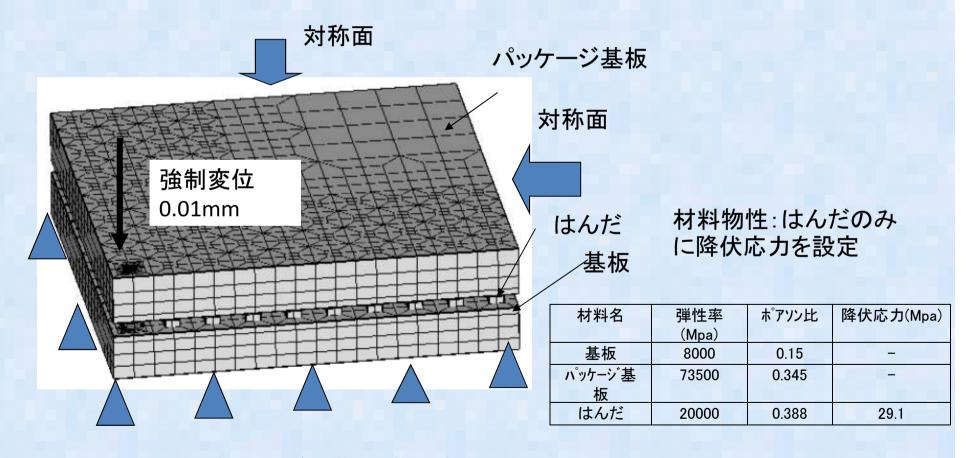
-Fuse1をOperetion のPartitionコマンデ で元のBoardとchip エリアに分割する。 -ここで先ほどの Cutplaneを使用する。



tetra2次要素を使ってメッシュを作成する。メッシュサイズは1mmとした。

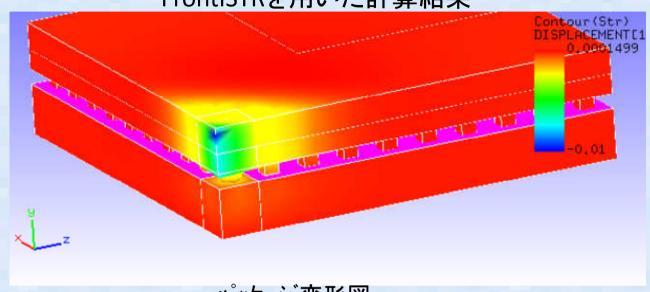

メッシュデータの中 ICCreate Groups from Geometryから グループを作成す る。

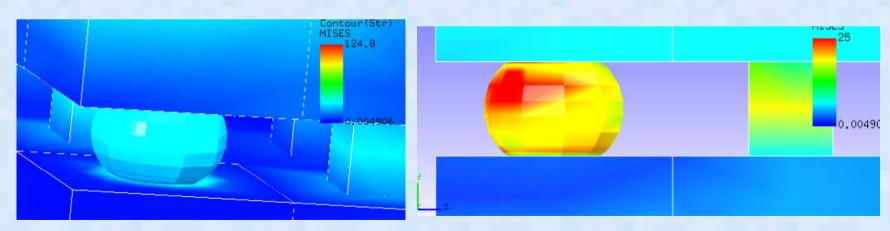
- ・Calculixで計算を実施、事前に手作業で初期温度、境界条件などの設定をテキスト編集で実施する必要あり
- -反りの分布図を見るとチップコーナの反りは0.062mmで理論計算の0.067mmに概ね一致する結果となっている。


機械的荷重にたいする強度解析

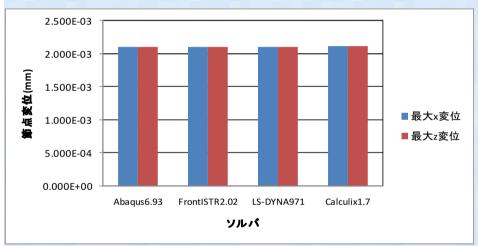
- 弾塑性問題の簡易パッケージモデルベンチマーク
- 解析モデル概要:以下のBGAパッケージ のパッケージ コーナ節点に強制変位0.01mmを
- 負荷して直下のBGAバンプに発生する応力、塑性ひずみをFrontISTR, Calculix, ABAQUSなどオープンソルバと比較、結果妥当性を検証
- 節点数:18000, 要素数:15000

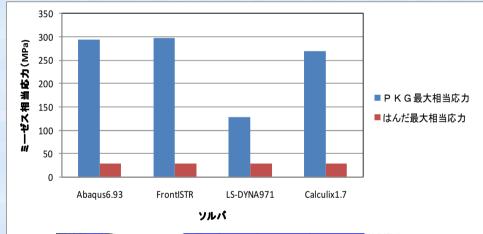
機械的荷重にたいする強度解析

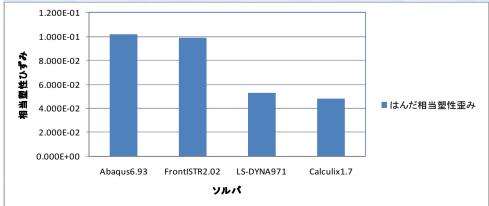

- 弾塑性問題の簡易モデルベンチマーク
- 荷重・拘束条件: パッケージコーナ節点に強制変位0.01mmを負荷、
- 基板底面は固定

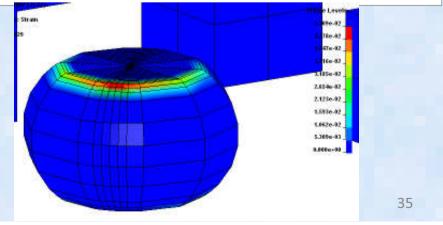

BGAパッケージ1/4モデル荷重・拘束条件

機械的荷重にたいする強度解析

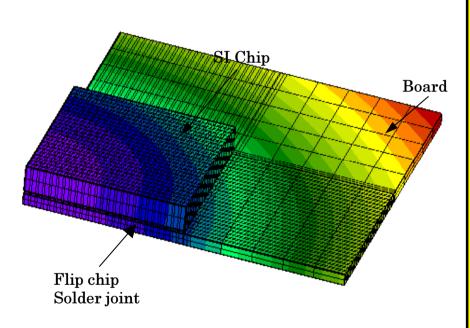

パッケージ変形図




BGA応力分布


b. 機械的荷重にたいする強度解析-ABAQUSとその他ソフト比較結果-

	Abaqus6.93	FrontISTR2.02	LS-DYNA971	Calculix1.7
最大x変位	2.104E-03	2.097E-03	2.11E-03	2.12E-03
最大z変位	2.104E-03	2.097E-03	2.11E-03	2.12E-03
PKG最大相当応力	2.936E+02	2.973E+02	127.18	270.015392
はんだ最大相当応力	2.910E+01	2.910E+01	29.09	29.10095037
はんだ相当塑性歪み	1.016E-01	9.877E-02	5.28E-02	4.83E-02



LSIフリップチップ実装パッケージ解析モデル

• LSIフリップチップパッケージでのパラメータStudy

温度条件:リフロー加熱を想定した温度変化

221℃(初期)⇒25℃(室温)

設計変数:パッケージ基板材料特性

縦弾性率と線膨張係数(各温度)

目的関数:LSIチップ応力、基板反り量、

はんだの最大相当塑性ひずみ

を最小化

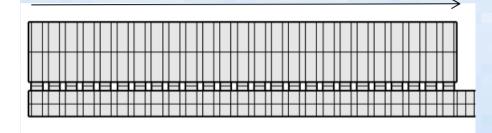
汎用非線形構造解析FEM: ABAQUS v6.7

フリーソルバ:

CalculiXv(ABAQUS比較)

http://www.calculix.de/

Electronic package simulation model

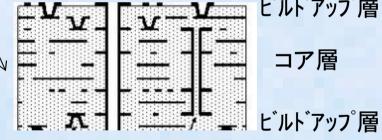

※上記モデルから自動化スクリプトを利用し、自動的にパラメータの数値を変更し、

多数の計算結果を得て、結果をマイニングソフトによって分析

電子パッケージモデル(2)

• 解析モデル寸法と設計変数

LSI Chip □25mm



Package Board □33mm

パッケージ基板に用いられるビルドアップ基板はビルドアップ層 ・コア層・銅配線の複合材→マクロな材料物性をコントロール可

パッケージ基板材料物性 基準値

	温度(℃)	弾性率(MPa)	線膨張係数(1/K)
	25	10339	2.26E-05
	50	10150	2.22E-05
	75	10024	2.23E-05
	100	9730	2.49E-05
	125	8960	2.60E-05
	150	7560	2.01E-05
	175	5964	1.34E-05
	200	4648	1.18E-05
ľ			- L"IL" > - S

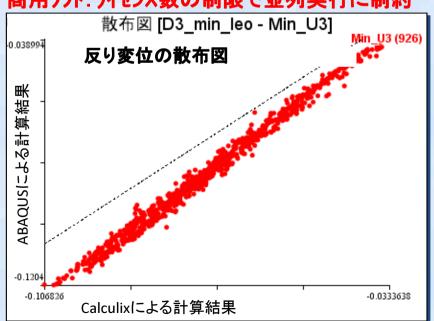
パッケージ用ビルドアップ基板積層構成詳細

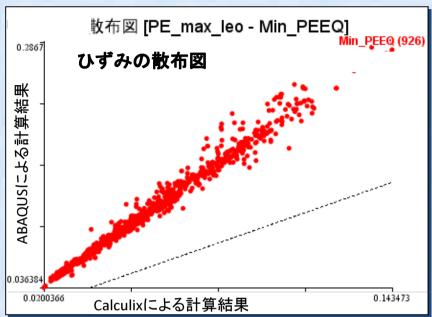
※設計変数:パッケージ基板の材料特性

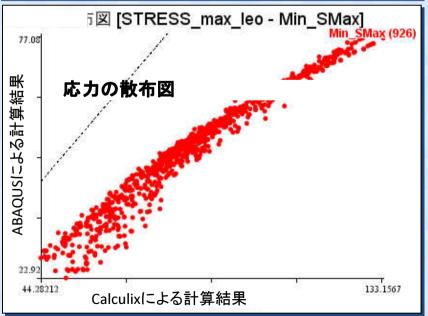
各温度弾性率(25-200℃温度)=1000~50000MPa 31分割

ホ°アソン比=0.1~0.49 7分割

各温度線膨張係数(25-200℃温度)=5×10-6~60×10-6(1/K) 15分割

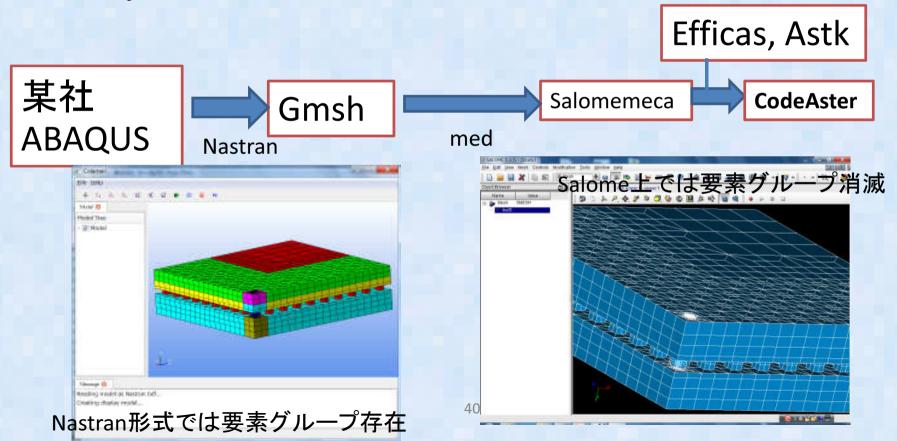

ABAQUSとCalculixの比較


- 同じモデルを与えた時の、OSSソルバ: Calculixと、 商用ソルバ: ABAQUS6.7の反り変位、応力、ひず みの計算結果比較
 - 横軸はCacluix、縦軸はABAQUS
 - 点線はx=yの直線
- 歪み、反り変位、応力ともおおよその線形性
 - ただし、ひずみや応力の絶対値は異なる点あり



Calculixのマイニング結果はABAQUSと同傾向

商用ソフト:ライセンス数の制限で並列実行に制約


38

結論

• Salomeと他のオープンソースとの連携方法を調査、中間ファイルを経由することでOpenFOAM, Calculix, FrontISTRなどにデータを変換し、計算可能であることを確認した。

今後の課題&ご質問

過去別ソフトで解析したメッシュデータをCodeAsterに変換して解析するために、Salomeへの読む込み方法を検討した。
-Nastran形式でGmshに読み込んで、Gmshからmed形式で出力することでメッシュは読み込みできたが要素グループ情報が消える。
→ ご質問: どなたか良い変換方法を御存じでしたら御教授ください。

質疑応答内容

- Create Group から Geometryあれば参照して 容易にグループ分けできる(MK氏?)
- 商用ソフトでUnvファイル出力すればグループ 分けがされたまま読み込みできる
- Calculixは今どの程度機能あるのか(KZ)?
 → 非線形材料は粘弾性はないがそそこ使える。接触解析も機能はあるが未検証(HS)