信頼性課 藤井 08/5/17

SalomeMecaの使い方 -- 7.2 塑性 - 結果の検証 (SalomeMeca 2008.1)

目次

- 1. はじめに
- 2. 確認方法
- 3. モデルの読み込み
- 4. Entityの作成
- 5. ASTK の起動
- 6. Code_Aster の編集
- 7. エラー確認
- 8. 出力項目の編集
- 9. 計算開始、結果の確認
- 1. はじめに

弾塑性解析では、塑性領域まで負荷を掛けた後で負荷を取り除いた時、塑性変形が残ったままになる。この 解析方法について、「塑性 - 負荷を変化させる」で方法を確認した。 実際にこの方法で理論通り変形しているかどうかをここで確認する。

2. 確認方法

単純な立方体のモデルを使って、引っ張りと圧縮の荷重を連続して掛けて、ひずみがどの様に変化していく かを確認する。

3. モデルの読み込み

Salome を起動して、モデルを読み込む。モデルは、検証を簡単にする為に単純な立方体のモデルとした。 この立方体(1辺10mm)のモデル「cubic.stp」を読み込む。(寸法は、10x10x10mm)

4.Entity の作成

解析としては、単純な解析とする為に、拘束は Z 軸方向のみ(XY 軸方向は自由に変形する)とする。この解 析ができる様にグループ化してメッシュを切る。下記ツリー参照。

Mesh

Hypotheses Algorithms <u>SalomeMecaの使い方 -- 7.2 塑性 - 結果の検証</u>

できあがったメッシュは、適当なフォルダ (plastic-ana とした)を作成し、この中にメッシュファイルを 適当なファイル名 (cubic10.med とした)をつけて Export しておく。

5. ASTK の起動

New FE Study で Project Name などを以下のように設定して、ASTK を起動する。 Template File は、「塑性 - 負荷を変化させる」で作成した Code_Aster ファイルを使う。

Project Name:	analize-cubic
Base Directory:	/home/caeuser/CAE/plastic-ana
MED Mesh File:	/home/caeuser/CAE/plastic-ana/cubic10.med
Template File:	<pre>/home/caeuser/CAE/plastic-pole-reload/pole-reload-force/pole-reload-force.c</pre>
omm	

6. Code_Aster の編集

Code_Aster の変更箇所は、材料定数、境界条件、負荷変動の幅となる。 材料定数は、前回のデータよりも自然なデータとするように変更する。(自然なデータとするだけで、正し い値ではない。)

DEFI_FONCTION	elast_pl
NOM_PARA	EPSI
NOM_RESU	SIGM
VALE	(0.0015,105,
	0.05,200,
	0.2,300,
	2,1000)

境界条件は、下記のように修正。

AFFE_CAR_MECA CHR 拘束条件

<u>SalomeMecaの使い方 -- 7.2 塑性 - 結果の検証</u>

MODELE	MODE	
DDL_IMPO		
DDL_IMPO_1		
GROUP_MA	fix	fix面:Z軸方向のみ拘束
DZ	0	
DDL_IMPO_2		
GROUP_MA	fixLY	fixLY線:XZ軸方向を拘束
DX	0	
DZ	0	
DDL IMPO 3		
GROUP NO	fixP	fixP 点:XYZ 方向全て拘束
DX	0	
DY	0	
D7	0	
02	0	
AFFF CHAR MECA	chr no	変動させる自荷条件
	HODE	
	proce	proce 面に
	200	press 面に 7.軸方向に 200Mpp 相当の芬重を色芬させる
12	200	2 軸方向に 2000時 相当の何重を負向ととる
負荷変動させる方法は、	下記のように値	多正。
DEFI FONCTION	depl imp	
NOM PARA	INST	
VALE	(0,0,	
	1.0.8,	引っ張り側の最大荷重
	2,0,	
	3,-1,	圧縮側の最大荷重
	4,0)	
DEFI_LIST_REEL	pas	
DEBUT	0	
INTERVALLE		
INTERVALLE_1		
JUSQU_A	1	~1まで5分割
NOMBRE	5	+200MPa
INTERVALLE_2		
JUSQU A	1.02	~1.02まで2分割
NOMBRE	2	
INTERVALLE 3		
JUSOU A	2	~2まで5分割
NOMBRE	5	0MPa
TNTERVALLE 4		
	2.02	~2.02まで2分割
NOMBRE	2102	
TNTERVALLE 5	-	
	3	~7まで5分割
NOMRRF	5	-200MPa
	5	200110
INTERVALLE_0		

<u>SalomeMecaの使い方 -- 7.2 塑性 - 結果の検証</u>

JUSQU_A	3.02	~3.02まで2分割
NOMBRE	2	
INTERVALLE_7		
JUSQU_A	4	~4 まで5分割
NOMBRE	5	0MPa

以上を修正し、保存する。

荷重は、以下のように掛けている。引っ張り160Mpaを掛けた後、圧縮200Mpa掛けている。

step	Vale	荷重	
0	0	0	
1	0.8	160	
2	0	0	
3	-1	-200	圧縮側を大きめに設定
4	0	0	

7. エラー確認

修正した Code_Aster を実行して、エラーを確認する。うまくいくので、後は出力内容を編集する。 「DEFI_FONCTION depl_imp」と「DEFI_LIST_REEL pas」の値が合っていないと途中でエラーが発生するの で注意。特に変曲点のところが荒い設定になっているとエラーが発生する。

8. 出力項目の編集

再び EFICAS を起動して、出力項目を編集する。出力は変位、相当応力、相当歪の3項目を出力させる様にする。

出力は、要素解を求めて節点解を求め、それを出力項目に指定している。この為、この順番で設定する。 まず、要素解は、下記のように修正する。

CALC_ELEM	RESU
MODELE	MODE
CHAM_MATER	MATE
RESULTAT	RESU
b_noil	
b_toutes	
OPTION	(EPSI_ELNO_DEPL,
	EQUI_ELNO_SIGM,
	EQUI_ELNO_EPSI)

節点解は、下記のように修正

CALC_NO	RESU
RESULTAT	RESU
OPTION	(EPSI_NOEU_DEPL,
	EQUI_NOEU_SIGM,
	EQUI_NOEU_EPSI)

出力項目の指定を下記のように指定する。

IMPR_RESU		
FORMAT	MED	
<pre>b_format_med</pre>		
UNITE	80	
RESU		
RESU_1		変位を指定
MAILLAGE	MAIL	
RESULTAT	RESU	
<pre>b_info_med</pre>		
b_sensibilite	2	
b_extrac		
NOM_CHAM	DEPL	変位
b_cmp		
NOM_CMP	(DX,DY,DZ)	XYZ 各方向
b_topologie		
RESU_2		相当歪を指定
MAILLAGE	MAIL	
RESULTAT	RESU	
<pre>b_info_med</pre>		
b_sensibilite	2	
b_extrac		
NOM_CHAM	EQUI_NOEU_EPSI	相当歪
b_cmp		指定せず(計算結果がそのまま残っている為)
b_topologie		
RESU_3		相当応力を指定
MAILLAGE	MAIL	
RESULTAT	RESU	
<pre>b_info_med</pre>		
b_sensibilite	2	
b_extrac		
NOM_CHAM	EQUI_NOEU_SIGM	I 相当応力
b_cmp		
NOM_CMP	VMIS	フォンミーゼス応力(ファンクションで定義した応力)
b_topologie		

相当応力は、ファンクション elast_pl で定義した式で計算される。(歪から応力を求めている。)上記で「VMIS」を指定しているが、この指定をしないと、ファンクションで計算せずに、ヤング率 70000MPa から相当応力を求めてしまうので、「VMIS」の指定は、必要。

9. 計算開始、結果の確認

エラーなく終了すると、Project 名のフォルダ内に、結果のファイル(analize-cubicres.med)ができあ がっているので、このファイルを Salome の Pre-Post で Import する。 各ステップ毎に、結果ファイルができあがっている。 各ステップ毎に最大変位量を求めた結果が下表となる。

Step最大変位(mm)Force(MPa)00.00.0

0.2	0.00497	32.00	
0.4	0.00994	64.00	
0.6	0.0149	96.00	ここまで弾性変形
0.8	0.170	128.00	
1	0.391	160.00	引っ張り側の最大荷重
1.216	0.385	125.44	
1.412	0.380	94.08	
1.608	0.375	62.72	
1.804	0.370	31.36	
2	0.365	0.0	荷重を取り除く
2.216	0.358	-43.20	
2.412	0.352	-82.40	
2.608	0.346	-121.6	
2.804	0.339	-160.80	ここではまだ塑性変形に至らず
3	0.0918	-200.00	圧縮側の最大荷重
3.216	0.0984	-156.80	
3.412	0.104	-117.60	
3.608	0.110	-78.40	
3.804	0.116	-39.20	
4	0.122	0.0	荷重を取り除く

最大変位を横軸でForce を縦軸でグラフを書くと、 等方硬化則に沿ったデータとなっている。

塑性変形(硬化)したものに再度荷重を掛けた時、 塑性変形させた荷重以内(圧縮、引っ張りとも)で は、弾性変形するが、その荷重を越えた段階で再度 塑性変形する。今回のデータでは、160MPaの引っ張 り荷重で塑性変形させているため、再度塑性変形さ せる為には、-160MPa以上の圧縮荷重が必要であり、 結果は-160MPaで塑性変形しているので、その通り になっている。

蛇足だが、計算させると、どうも2.8step 近辺で発 散が起こり、エラーで停止していた。これは、2.8st ep が丁度塑性変形開始し始める step であった事に 起因しているようだ。 → 発散し始める step 近辺 は step を細かくする事が必要。

また、出力させた相当応力と相当歪のデータをまと めると、下記の様になる。Step2 以降は、圧縮側に なるので、意識的に SIGM の符号をマイナスにしている。

Step	EPSI	SIGM(MPa)
0	0.	0.0
0.2	0.000441	32.0
0.4	0.000883	64.0
0.6	0.00132	96.1
0.8	0.0168	130.0
1	0.0386	165.0
1.216	0.0381	129.0
1.412	0.0377	97.0
1.608	0.0372	64.6

ここまで弾性変形 引っ張り側の最大荷重

1.804	0.0368	32.3	
2	0.0363	0.0	荷重を取り除く
2.216	0.0357	-44.5	
2.412	0.0352	-84.4	
2.608	0.0346	-125.0	
2.804	0.0340	-165.0	ここまで弾性変形
3	0.00947	-202.0	圧縮側の最大荷重
3.216	0.0101	-158.0	
3.412	0.0106	-119.0	
3.608	0.0111	-79.1	
3.804	0.0117	-39.6	
4	0.0122	0.0	荷重を取り除く

応力一歪線図をファンクションで定義しているが、 このファンクションでは、(0.0015,105)が降伏点 になっている。計算結果も歪が0.0015を超えてから 塑性変形が始まっており、その通りになっている。 また、計算した歪(EPSI)を10倍(1辺10mm)する とほぼ変位に等しくなっている。また、計算した相 当応力(SIGM)も加えた荷重とほぼ等しくなってい る事からも、計算結果は理論通りの結果になってい ることがわかる。

